Matching Items (141)
Filtering by

Clear all filters

156044-Thumbnail Image.png
Description
In a collaborative environment where multiple robots and human beings are expected

to collaborate to perform a task, it becomes essential for a robot to be aware of multiple

agents working in its work environment. A robot must also learn to adapt to

different agents in the workspace and conduct its interaction based

In a collaborative environment where multiple robots and human beings are expected

to collaborate to perform a task, it becomes essential for a robot to be aware of multiple

agents working in its work environment. A robot must also learn to adapt to

different agents in the workspace and conduct its interaction based on the presence

of these agents. A theoretical framework was introduced which performs interaction

learning from demonstrations in a two-agent work environment, and it is called

Interaction Primitives.

This document is an in-depth description of the new state of the art Python

Framework for Interaction Primitives between two agents in a single as well as multiple

task work environment and extension of the original framework in a work environment

with multiple agents doing a single task. The original theory of Interaction

Primitives has been extended to create a framework which will capture correlation

between more than two agents while performing a single task. The new state of the

art Python framework is an intuitive, generic, easy to install and easy to use python

library which can be applied to use the Interaction Primitives framework in a work

environment. This library was tested in simulated environments and controlled laboratory

environment. The results and benchmarks of this library are available in the

related sections of this document.
ContributorsKumar, Ashish, M.S (Author) / Amor, Hani Ben (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2017
156156-Thumbnail Image.png
Description
The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the

The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the rotation of seven DOF in the arm. Analyzed movements which imitated the following 3 activities of daily living: moving an empty soda can from a table and placing it on a further position; placing the empty soda can from initial position at table to a position at shoulder level on a shelf; and placing the empty soda can from initial position at table to a position at eye level on a shelf. Kinematic and kinetic analyses were conducted for these three movements. The studied kinematic characteristics were: hand trajectory in the sagittal plane, displacements of the 7 DOF, and contribution of each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net torque (NT) at the shoulder, elbow, and wrist. Using the relationship NT = MT + GT + IT, the role of active control and passive factors (gravitation and inter-segmental dynamics) in rotation of each joint by computing MT contribution (MTC) to NT was assessed. MTC was computed using the ratio of the signed MT projection on NT to NT magnitude. Despite a variety of joint movements available across the different tasks, 3 patterns of shoulder and elbow coordination prevailed in each movement: 1) active rotation of the shoulder and predominantly passive rotation of the elbow; 2) active rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive rotation of both joints. Analysis of wrist control suggested that MT mainly compensates for passive torque and provides adjustment of wrist motion according to requirements of each task. In conclusion, it was observed that the 3 shoulder-elbow coordination patterns (during which at least one joint moved) passively represented joint control primitives, underlying the performance of well-learned arm movements, although these patterns may be less prevalent during non-habitual movements.
ContributorsSansgiri, Dattaraj (Author) / Dounskaia, Natalia (Thesis advisor) / Schaefer, Sydney (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
Description
The world’s population is currently 9% visually impaired. Medical sciences do not have a biological fix that can cure this visual impairment. Visually impaired people are currently being assisted with biological fixes or assistive devices. The current assistive devices are limited in size as well as resolution. This thesis presents

The world’s population is currently 9% visually impaired. Medical sciences do not have a biological fix that can cure this visual impairment. Visually impaired people are currently being assisted with biological fixes or assistive devices. The current assistive devices are limited in size as well as resolution. This thesis presents the development and experimental validation of a control system for a new vibrotactile haptic display that is currently in development. In order to allow the vibrotactile haptic display to be used to represent motion, the control system must be able to change the image displayed at a rate of at least 30 frames/second. In order to achieve this, this thesis introduces and investigates the use of three improvements: threading, change filtering, and wave libraries. Through these methods, it is determined that an average of 40 frames/second can be achieved.
ContributorsKIM, KENDRA (Author) / Sodemann, Angela (Thesis advisor) / Robertson, John (Committee member) / Bansal, Ajay (Committee member) / Arizona State University (Publisher)
Created2018
156390-Thumbnail Image.png
Description
This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users.

This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.
ContributorsVale, Nicholas Marshall (Author) / Polygerinos, Panagiotis (Thesis advisor) / Zhang, Wenlong (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
156398-Thumbnail Image.png
Description
Human locomotion is an essential function that enables individuals to lead healthy, independent lives. One important feature of natural walking is the capacity to transition across varying surfaces, enabling an individual to traverse complex terrains while maintaining balance. There has been extensive work regarding improving prostheses' performance in changing walking

Human locomotion is an essential function that enables individuals to lead healthy, independent lives. One important feature of natural walking is the capacity to transition across varying surfaces, enabling an individual to traverse complex terrains while maintaining balance. There has been extensive work regarding improving prostheses' performance in changing walking conditions, but there is still a need to address the transition from rigid to compliant or dynamic surfaces, such as the transition from pavement to long grass or soft sand. This research aims to investigate the mechanisms involved such transitions and identify potential indicators of the anticipated change that can be applied to the control of a powered ankle prosthetic to reduce falls and improve stability in lower-limb amputees in a wider range of walking environments. A series of human subject experiments were conducted using the Variable Stiffness Treadmill (VST) to control walking surface compliance while gait kinematics and muscular activation data were collected from three healthy, nondisabled subjects. Specifically, the kinematics and electromyography (EMG) profiles of the gait cycles immediately preceding and following an expected change in surface compliance were compared to that of normal, rigid surface walking. While the results do not indicate statistical differences in the EMG profiles between the two modes of walking, the muscle activation appears to be qualitatively different from inspection of the data. Additionally, there were promising statistically significant changes in joint angles, especially in observed increases in hip flexion during the swing phases both before and during an expected change in surface. Decreases in ankle flexion immediately before heel strike on the perturbed leg were also observed to occur simultaneously with decreases in tibialis anterior (TA) muscle activation, which encourages additional research investigating potential changes in EMG profiles. Ultimately, more work should be done to make strong conclusions about potential indicators of walking surface transitions, but this research demonstrates the potential of EMG and kinematic data to be used in the control of a powered ankle prosthetic.
ContributorsFou, Linda (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Polygerinos, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
157457-Thumbnail Image.png
Description
The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by

The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by a small-scale, 5 degree-of-freedom (DOF) robotic arm that are useful for construction operations, specifically bricklaying. A software framework for the robotic arm with motion and path planning features and different control capabilities has also been developed using the Robot Operating System (ROS).

First, a literature review of bricklaying construction activity and existing robots’ performance is discussed. After describing an overview of the required robot structure, a mathematical model is presented for the 5-DOF robotic arm. A model-based computed torque controller is designed for the nonlinear dynamic robotic arm, taking into consideration the dynamic and kinematic properties of the arm. For sustainable growth of this technology so that it is affordable to the masses, it is important that the energy consumption by the robot is optimized. In this thesis, the trajectory of the robotic arm is optimized using sequential quadratic programming. The results of the energy optimization procedure are also analyzed for different possible trajectories.

A construction testbed setup is simulated in the ROS platform to validate the designed controllers and optimized robot trajectories on different experimental scenarios. A commercially available 5-DOF robotic arm is modeled in the ROS simulators Gazebo and Rviz. The path and motion planning is performed using the Moveit-ROS interface and also implemented on a physical small-scale robotic arm. A Matlab-ROS framework for execution of different controllers on the physical robot is described. Finally, the results of the controller simulation and experiments are discussed in detail.
ContributorsGandhi, Sushrut (Author) / Berman, Spring (Thesis advisor) / Marvi, Hamidreza (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
157469-Thumbnail Image.png
Description
What if there is a way to integrate prosthetics seamlessly with the human body and robots could help improve the lives of children with disabilities? With physical human-robot interaction being seen in multiple aspects of life, including industry, medical, and social, how these robots are interacting with human becomes

What if there is a way to integrate prosthetics seamlessly with the human body and robots could help improve the lives of children with disabilities? With physical human-robot interaction being seen in multiple aspects of life, including industry, medical, and social, how these robots are interacting with human becomes even more important. Therefore, how smoothly the robot can interact with a person will determine how safe and efficient this relationship will be. This thesis investigates adaptive control method that allows a robot to adapt to the human's actions based on the interaction force. Allowing the relationship to become more effortless and less strained when the robot has a different goal than the human, as seen in Game Theory, using multiple techniques that adapts the system. Few applications this could be used for include robots in physical therapy, manufacturing robots that can adapt to a changing environment, and robots teaching people something new like dancing or learning how to walk after surgery.

The experience gained is the understanding of how a cost function of a system works, including the tracking error, speed of the system, the robot’s effort, and the human’s effort. Also, this two-agent system, results into a two-agent adaptive impedance model with an input for each agent of the system. This leads to a nontraditional linear quadratic regulator (LQR), that must be separated and then added together. Thus, creating a traditional LQR. This new experience can be used in the future to help build better safety protocols on manufacturing robots. In the future the knowledge learned from this research could be used to develop technologies for a robot to allow to adapt to help counteract human error.
ContributorsBell, Rebecca C (Author) / Zhang, Wenlong (Thesis advisor) / Chiou, Erin (Committee member) / Aukes, Daniel (Committee member) / Arizona State University (Publisher)
Created2019
156523-Thumbnail Image.png
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning and control of quadrotors in indoor environments. In addition to providing empirical evidence for the abundance of such cues in indoor environments, the usefulness of these perspective cues is demonstrated by designing a control algorithm for navigating a quadrotor in indoor corridors. An Extended Kalman Filter (EKF), implemented on top of the vision algorithm, serves to improve the robustness of the algorithm to changing illumination.

In this thesis, vanishing points are the perspective cues used to control and navigate a quadrotor in an indoor corridor. Indoor corridors are an abundant source of parallel lines. As a consequence of perspective projection, parallel lines in the real world, that are not parallel to the plane of the camera, intersect at a point in the image. This point is called the vanishing point of the image. The vanishing point is sensitive to the lateral motion of the camera and hence the quadrotor. By tracking the position of the vanishing point in every image frame, the quadrotor can navigate along the center of the corridor.

Experiments are conducted using the Augmented Reality (AR) Drone 2.0. The drone is equipped with the following componenets: (1) 720p forward facing camera for vanishing point detection, (2) 240p downward facing camera, (3) Inertial Measurement Unit (IMU) for attitude control , (4) Ultrasonic sensor for estimating altitude, (5) On-board 1 GHz Processor for processing low level commands. The reliability of the vision algorithm is presented by flying the drone in indoor corridors.
ContributorsRavishankar, Nikhilesh (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Berman, Spring M (Committee member) / Arizona State University (Publisher)
Created2018
156496-Thumbnail Image.png
Description
Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can

Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can be controlled to perform safe and compliant mobile manipulation in three-dimensional space. The SPL is inspired by invertebrate limbs, such as the elephant trunk and the arms of the octopus. In this work, various geometrical and physical parameters of the SPL are identified, and behavior of the actuators that comprise it are studied by varying their parameters through novel quasi-static computational models. As a result, this study provides a set of engineering design rules to create soft actuators for continuum soft robotic arms by understanding how varying parameters affect the actuator's motion as a function of the input pressure. A prototype of the SPL is fabricated to analyze the accuracy of these computational models by performing linear expansion, bending and arbitrary pose tests. Furthermore, combinations of the parameters based on the application of the SPL are determined to affect the weight, payload capacity, and stiffness of the arm. Experimental results demonstrate the accuracy of the proposed computational models and help in understanding the behavior of soft compliant actuators. Finally, based on the set functional requirements for the assistance of impaired users, results show the effectiveness of the SPL in performing tasks for activities of daily living.
ContributorsNuthi, Sai Gautham (Author) / Polygerinos, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2018
156560-Thumbnail Image.png
Description
This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are

This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are designed such that the output trajectories of all the nonlinear models are guaranteed to be distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise. I propose a two-step approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics by uncertain affine models, as abstractions that preserve all its system behaviors such that any discrimination guarantees for the affine abstraction also hold for the original nonlinear system. Then, I propose a novel solution in the form of a mixed-integer linear program (MILP) to the active model discrimination problem for uncertain affine models, which includes the affine abstraction and thus, the nonlinear models. Finally, I demonstrate the effectiveness of our approach for identifying the intention of other vehicles in a highway lane changing scenario. For the abstraction, I explore two approaches. In the first approach, I construct the bounding planes using a Mixed-Integer Nonlinear Problem (MINLP) formulation of the given system with appropriately designed constraints. For the second approach, I solve a linear programming (LP) problem that over-approximates the nonlinear function at only the grid points of a mesh with a given resolution and then accounting for the entire domain via an appropriate correction term. To achieve a desired approximation accuracy, we also iteratively subdivide the domain into subregions. This method applies to nonlinear functions with different degrees of smoothness, including Lipschitz continuous functions, and improves on existing approaches by enabling the use of tighter bounds. Finally, we compare the effectiveness of this approach with the existing optimization-based methods in simulation and illustrate its applicability for estimator design.
ContributorsSingh, Kanishka Raj (Author) / Yong, Sze Zheng (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2018