Matching Items (16)
Filtering by

Clear all filters

189226-Thumbnail Image.png
Description
This dissertation explores the use of artificial intelligence and machine learningtechniques for the development of controllers for fully-powered robotic prosthetics. The aim of the research is to enable prosthetics to predict future states and control biomechanical properties in both linear and nonlinear fashions, with a particular focus on ergonomics. The research is motivated by

This dissertation explores the use of artificial intelligence and machine learningtechniques for the development of controllers for fully-powered robotic prosthetics. The aim of the research is to enable prosthetics to predict future states and control biomechanical properties in both linear and nonlinear fashions, with a particular focus on ergonomics. The research is motivated by the need to provide amputees with prosthetic devices that not only replicate the functionality of the missing limb, but also offer a high level of comfort and usability. Traditional prosthetic devices lack the sophistication to adjust to a user’s movement patterns and can cause discomfort and pain over time. The proposed solution involves the development of machine learning-based controllers that can learn from user movements and adjust the prosthetic device’s movements accordingly. The research involves a combination of simulation and real-world testing to evaluate the effectiveness of the proposed approach. The simulation involves the creation of a model of the prosthetic device and the use of machine learning algorithms to train controllers that predict future states and control biomechanical properties. The real- world testing involves the use of human subjects wearing the prosthetic device to evaluate its performance and usability. The research focuses on two main areas: the prediction of future states and the control of biomechanical properties. The prediction of future states involves the development of machine learning algorithms that can analyze a user’s movements and predict the next movements with a high degree of accuracy. The control of biomechanical properties involves the development of algorithms that can adjust the prosthetic device’s movements to ensure maximum comfort and usability for the user. The results of the research show that the use of artificial intelligence and machine learning techniques can significantly improve the performance and usability of pros- thetic devices. The machine learning-based controllers developed in this research are capable of predicting future states and adjusting the prosthetic device’s movements in real-time, leading to a significant improvement in ergonomics and usability. Overall, this dissertation provides a comprehensive analysis of the use of artificial intelligence and machine learning techniques for the development of controllers for fully-powered robotic prosthetics.
ContributorsCLARK, GEOFFEY M (Author) / Ben Amor, Heni (Thesis advisor) / Dasarathy, Gautam (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Ward, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2023
168422-Thumbnail Image.png
Description
Natural Language plays a crucial role in human-robot interaction as it is the common ground where human beings and robots can communicate and understand each other. However, most of the work in natural language and robotics is majorly on generating robot actions using a natural language command, which is a

Natural Language plays a crucial role in human-robot interaction as it is the common ground where human beings and robots can communicate and understand each other. However, most of the work in natural language and robotics is majorly on generating robot actions using a natural language command, which is a unidirectional way of communication. This work focuses on the other direction of communication, where the approach allows a robot to describe its actions from sampled images and joint sequences from the robot task. The importance of this work is that it utilizes multiple modalities, which are the start and end images from the robot task environment and the joint trajectories of the robot arms. The fusion of different modalities is not just about fusing the data but knowing what information to extract from which data sources in such a way that the language description represents the state of the manipulator and the environment that it is performing the task on. From the experimental results of various simulated robot environments, this research demonstrates that utilizing multiple modalities improves the accuracy of the natural language description, and efficiently fusing the modalities is crucial in generating such descriptions by harnessing most of the various data sources.
ContributorsKALIRATHINAM, KAMALESH (Author) / Ben Amor, Heni (Thesis advisor) / Phielipp, Mariano (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2021
168406-Thumbnail Image.png
Description
Enabling robots to physically engage with their environment in a safe and efficient manner is an essential step towards human-robot interaction. To date, robots usually operate as pre-programmed workers that blindly execute tasks in highly structured environments crafted by skilled engineers. Changing the robots’ behavior to cover new duties or

Enabling robots to physically engage with their environment in a safe and efficient manner is an essential step towards human-robot interaction. To date, robots usually operate as pre-programmed workers that blindly execute tasks in highly structured environments crafted by skilled engineers. Changing the robots’ behavior to cover new duties or handle variability is an expensive, complex, and time-consuming process. However, with the advent of more complex sensors and algorithms, overcoming these limitations becomes within reach. This work proposes innovations in artificial intelligence, language understanding, and multimodal integration to enable next-generation grasping and manipulation capabilities in autonomous robots. The underlying thesis is that multimodal observations and instructions can drastically expand the responsiveness and dexterity of robot manipulators. Natural language, in particular, can be used to enable intuitive, bidirectional communication between a human user and the machine. To this end, this work presents a system that learns context-aware robot control policies from multimodal human demonstrations. Among the main contributions presented are techniques for (a) collecting demonstrations in an efficient and intuitive fashion, (b) methods for leveraging physical contact with the environment and objects, (c) the incorporation of natural language to understand context, and (d) the generation of robust robot control policies. The presented approach and systems are evaluated in multiple grasping and manipulation settings ranging from dexterous manipulation to pick-and-place, as well as contact-rich bimanual insertion tasks. Moreover, the usability of these innovations, especially when utilizing human task demonstrations and communication interfaces, is evaluated in several human-subject studies.
ContributorsStepputtis, Simon (Author) / Ben Amor, Heni (Thesis advisor) / Baral, Chitta (Committee member) / Yang, Yezhou (Committee member) / Lee, Stefan (Committee member) / Arizona State University (Publisher)
Created2021
161994-Thumbnail Image.png
Description
Imitation learning is a promising methodology for teaching robots how to physically interact and collaborate with human partners. However, successful interaction requires complex coordination in time and space, i.e., knowing what to do as well as when to do it. This dissertation introduces Bayesian Interaction Primitives, a probabilistic imitation learning

Imitation learning is a promising methodology for teaching robots how to physically interact and collaborate with human partners. However, successful interaction requires complex coordination in time and space, i.e., knowing what to do as well as when to do it. This dissertation introduces Bayesian Interaction Primitives, a probabilistic imitation learning framework which establishes a conceptual and theoretical relationship between human-robot interaction (HRI) and simultaneous localization and mapping. In particular, it is established that HRI can be viewed through the lens of recursive filtering in time and space. In turn, this relationship allows one to leverage techniques from an existing, mature field and develop a powerful new formulation which enables multimodal spatiotemporal inference in collaborative settings involving two or more agents. Through the development of exact and approximate variations of this method, it is shown in this work that it is possible to learn complex real-world interactions in a wide variety of settings, including tasks such as handshaking, cooperative manipulation, catching, hugging, and more.
ContributorsCampbell, Joseph (Author) / Ben Amor, Heni (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Yamane, Katsu (Committee member) / Kambhampati, Subbarao (Committee member) / Arizona State University (Publisher)
Created2021
161806-Thumbnail Image.png
Description
Autonomous Vehicles (AVs) have the potential to significantly evolve transportation. AVs are expected to make transportation safer by avoiding accidents that happen due to human errors. When AVs become connected, they can exchange information with the infrastructure or other Connected Autonomous Vehicles (CAVs) to efficiently plan their future motion and

Autonomous Vehicles (AVs) have the potential to significantly evolve transportation. AVs are expected to make transportation safer by avoiding accidents that happen due to human errors. When AVs become connected, they can exchange information with the infrastructure or other Connected Autonomous Vehicles (CAVs) to efficiently plan their future motion and therefore, increase the road throughput and reduce energy consumption. Cooperative algorithms for CAVs will not be deployed in real life unless they are proved to be safe, robust, and resilient to different failure models. Since intersections are crucial areas where most accidents happen, this dissertation first focuses on making existing intersection management algorithms safe and resilient against network and computation time, bounded model mismatches and external disturbances, and the existence of a rogue vehicle. Then, a generic algorithm for conflict resolution and cooperation of CAVs is proposed that ensures the safety of vehicles even when other vehicles suddenly change their plan. The proposed approach can also detect deadlock situations among CAVs and resolve them through a negotiation process. A testbed consisting of 1/10th scale model CAVs is built to evaluate the proposed algorithms. In addition, a simulator is developed to perform tests at a large scale. Results from the conducted experiments indicate the robustness and resilience of proposed approaches.
ContributorsKhayatian, Mohammad (Author) / Shrivastava, Aviral (Thesis advisor) / Fainekos, Georgios (Committee member) / Ben Amor, Heni (Committee member) / Yang, Yezhou (Committee member) / Lou, Yingyan (Committee member) / Iannucci, Bob (Committee member) / Arizona State University (Publisher)
Created2021
187325-Thumbnail Image.png
Description
SLAM (Simultaneous Localization and Mapping) is a problem that has existed for a long time in robotics and autonomous navigation. The objective of SLAM is for a robot to simultaneously figure out its position in space and map its environment. SLAM is especially useful and mandatory for robots that want

SLAM (Simultaneous Localization and Mapping) is a problem that has existed for a long time in robotics and autonomous navigation. The objective of SLAM is for a robot to simultaneously figure out its position in space and map its environment. SLAM is especially useful and mandatory for robots that want to navigate autonomously. The description might make it seem like a chicken and egg problem, but numerous methods have been proposed to tackle SLAM. Before the rise in the popularity of deep learning and AI (Artificial Intelligence), most existing algorithms involved traditional hard-coded algorithms that would receive and process sensor information and convert it into some solvable sensor-agnostic problem. The challenge for these sorts of methods is having to tackle dynamic environments. The more variety in the environment, the poorer the results. Also due to the increase in computational power and the capability of deep learning-based image processing, visual SLAM has become extremely viable and maybe even preferable to traditional SLAM algorithms. In this research, a deep learning-based solution to the SLAM problem is proposed, specifically monocular visual SLAM which is solving the problem of SLAM purely with a singular camera as the input, and the model is tested on the KITTI (Karlsruhe Institute of Technology & Toyota Technological Institute) odometry dataset.
ContributorsRupaakula, Krishna Sandeep (Author) / Bansal, Ajay (Thesis advisor) / Baron, Tyler (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2023
193467-Thumbnail Image.png
Description
Robot motion and control remains a complex problem both in general and inthe field of machine learning (ML). Without ML approaches, robot controllers are typically designed manually, which can take considerable time, generally requiring accounting for a range of edge cases and often producing models highly constrained to specific tasks. ML can decrease

Robot motion and control remains a complex problem both in general and inthe field of machine learning (ML). Without ML approaches, robot controllers are typically designed manually, which can take considerable time, generally requiring accounting for a range of edge cases and often producing models highly constrained to specific tasks. ML can decrease the time it takes to create a model while simultaneously allowing it to operate on a broader range of tasks. The utilization of neural networks to learn from demonstration is, in particular, an approach with growing popularity due to its potential to quickly fit the parameters of a model to mimic training data. Many such neural networks, especially in the realm of transformer-based architectures, act more as planners, taking in an initial context and then generating a sequence from that context one step at a time. Others hybridize the approach, predicting a latent plan and conditioning immediate actions on that plan. Such approaches may limit a model’s ability to interact with a dynamic environment, needing to replan to fully update its understanding of the environmental context. In this thesis, Language-commanded Scene-aware Action Response (LanSAR) is proposed as a reactive transformer-based neural network that makes immediate decisions based on previous actions and environmental changes. Its actions are further conditioned on a language command, serving as a control mechanism while also narrowing the distribution of possible actions around this command. It is shown that LanSAR successfully learns a strong representation of multimodal visual and spatial input, and learns reasonable motions in relation to most language commands. It is also shown that LanSAR can struggle with both the accuracy of motions and understanding the specific semantics of language commands
ContributorsHardy, Adam (Author) / Ben Amor, Heni (Thesis advisor) / Srivastava, Siddharth (Committee member) / Pavlic, Theodore (Committee member) / Arizona State University (Publisher)
Created2024
157365-Thumbnail Image.png
Description
UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track

UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track trends in their data through a labelling feature.

The tool was developed following the incremental development process in order to quickly create a functional and testable tool. The incremental process also allowed for feedback from radio astronomers to help guide the project's development.

UVLabel provides both a functional product, and a modifiable and scalable code base for radio astronomer developers. This enables astronomers studying various astronomical interferometric data labelling capabilities. The tool can then be used to improve their filtering methods, pursue machine learning solutions, and discover new trends. Finally, UVLabel will be open source to put customization, scalability, and adaptability in the hands of these researchers.
ContributorsLa Place, Cecilia (Author) / Bansal, Ajay (Thesis advisor) / Jacobs, Daniel (Thesis advisor) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2019
156771-Thumbnail Image.png
Description
Reinforcement learning (RL) is a powerful methodology for teaching autonomous agents complex behaviors and skills. A critical component in most RL algorithms is the reward function -- a mathematical function that provides numerical estimates for desirable and undesirable states. Typically, the reward function must be hand-designed by a human expert

Reinforcement learning (RL) is a powerful methodology for teaching autonomous agents complex behaviors and skills. A critical component in most RL algorithms is the reward function -- a mathematical function that provides numerical estimates for desirable and undesirable states. Typically, the reward function must be hand-designed by a human expert and, as a result, the scope of a robot's autonomy and ability to safely explore and learn in new and unforeseen environments is constrained by the specifics of the designed reward function. In this thesis, I design and implement a stateful collision anticipation model with powerful predictive capability based upon my research of sequential data modeling and modern recurrent neural networks. I also develop deep reinforcement learning methods whose rewards are generated by self-supervised training and intrinsic signals. The main objective is to work towards the development of resilient robots that can learn to anticipate and avoid damaging interactions by combining visual and proprioceptive cues from internal sensors. The introduced solutions are inspired by pain pathways in humans and animals, because such pathways are known to guide decision-making processes and promote self-preservation. A new "robot dodge ball' benchmark is introduced in order to test the validity of the developed algorithms in dynamic environments.
ContributorsRichardson, Trevor W (Author) / Ben Amor, Heni (Thesis advisor) / Yang, Yezhou (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2018
157251-Thumbnail Image.png
Description
This thesis presents a family of adaptive curvature methods for gradient-based stochastic optimization. In particular, a general algorithmic framework is introduced along with a practical implementation that yields an efficient, adaptive curvature gradient descent algorithm. To this end, a theoretical and practical link between curvature matrix estimation and shrinkage methods

This thesis presents a family of adaptive curvature methods for gradient-based stochastic optimization. In particular, a general algorithmic framework is introduced along with a practical implementation that yields an efficient, adaptive curvature gradient descent algorithm. To this end, a theoretical and practical link between curvature matrix estimation and shrinkage methods for covariance matrices is established. The use of shrinkage improves estimation accuracy of the curvature matrix when data samples are scarce. This thesis also introduce several insights that result in data- and computation-efficient update equations. Empirical results suggest that the proposed method compares favorably with existing second-order techniques based on the Fisher or Gauss-Newton and with adaptive stochastic gradient descent methods on both supervised and reinforcement learning tasks.
ContributorsBarron, Trevor (Author) / Ben Amor, Heni (Thesis advisor) / He, Jingrui (Committee member) / Levihn, Martin (Committee member) / Arizona State University (Publisher)
Created2019