Matching Items (59)
Filtering by

Clear all filters

Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135645-Thumbnail Image.png
Description
This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not

This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not limited in size and location to the user's arm as with exoskeletal devices. Soft robotics differ from traditional robotics in that they are made using soft materials such as silicone elastomers rather than hard materials such as metals or plastics. This thesis presents the design, fabrication, and testing of the arm, including the joints and the actuators to move them, as well as the design and fabrication of the human-body interface to unite man and machine. This prototype utilizes two types of pneumatically-driven actuators, pneumatic artificial muscles and fiber-reinforced actuators, to actuate the elbow and shoulder joints, respectively. The robotic limb is mounted at the waist on a backpack frame to avoid interfering with the wearer's biological arm. Through testing and evaluation, this prototype device proves the feasibility of soft supernumerary limbs, and opens up opportunities for further development into the field.
ContributorsOlson, Weston Roscoe (Author) / Polygerinos, Panagiotis (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135593-Thumbnail Image.png
Description
The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched

The effect of conflicting sensorimotor memories on optimal force strategies was explored. Subjects operated a virtual object controlled by a physical handle to complete a simple straight-line task. Perturbations applied to the handle induced a period of increased error in subject accuracy. After two blocks of 33 trials, perturbations switched direction, inducing increased error from the previous trials. Subjects returned after a 24-hour period to complete a similar protocol, but beginning with the second context and ending with the first. Interference from the first context on each day caused an increase in initial error for the second (P < 0.05). Following the rest period, subjects showed retention of the sensorimotor memory from the previous day through significantly decreased initial error (P = 3x10-6). However, subjects showed an increase in forces for each new context resulting from a sub-optimal motor strategy. Higher levels of total effort (P < 0.05) and a lack of separation between force values for opposing and non-opposing digits (P > 0.05) indicated a strategy that used more energy to complete the task, even when rates of learning appeared identical or improved. Two possible mechanisms for this lack of energy conservation have been proposed.
ContributorsSmith, Michael David (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135981-Thumbnail Image.png
Description
Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136814-Thumbnail Image.png
Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
ContributorsTsui, Jessica W (Author) / Muthuswamy, Jitteran (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137106-Thumbnail Image.png
Description
The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation

The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation speeds and two levels of rotation resistance were used to investigate tactile cues during knob rotation. In the future, this multidigit task can be generalized to similar rotational tasks, such as opening a bottle or turning a doorknob.
ContributorsChalla, Santhi Priya (Author) / Santos, Veronica (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137748-Thumbnail Image.png
Description
I worked on the human-machine interface to improve human physical capability. This work was done in the Human Oriented Robotics and Control Lab (HORC) towards the creation of an advanced, EMG-controlled exoskeleton. The project was new, and any work on the human- machine interface needs the physical interface itself. So

I worked on the human-machine interface to improve human physical capability. This work was done in the Human Oriented Robotics and Control Lab (HORC) towards the creation of an advanced, EMG-controlled exoskeleton. The project was new, and any work on the human- machine interface needs the physical interface itself. So I designed and fabricated a human-robot coupling device with a novel safety feature. The validation testing of this coupling proved very successful, and the device was granted a provisional patent as well as published to facilitate its spread to other human-machine interface applications, where it could be of major benefit. I then employed this coupling in experimentation towards understanding impedance, with the end goal being the creation of an EMG-based impedance exoskeleton control system. I modified a previously established robot-to-human perturbation method for use in my novel, three- dimensional (3D) impedance measurement experiment. Upon execution of this experiment, I was able to successfully characterize passive, static human arm stiffness in 3D, and in doing so validated the aforementioned method. This establishes an important foundation for promising future work on understanding impedance and the creation of the proposed control scheme, thereby furthering the field of human-robot interaction.
ContributorsO'Neill, Gerald D. (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137175-Thumbnail Image.png
Description
The purpose of this project is to design a waterproof magnetic coupling that will allow the actuators on remotely operated vehicles (ROV) to remain water tight in extreme underwater conditions for longs periods of time. ROVs are tethered mobile robots controlled and powered by an operator from some distance away

The purpose of this project is to design a waterproof magnetic coupling that will allow the actuators on remotely operated vehicles (ROV) to remain water tight in extreme underwater conditions for longs periods of time. ROVs are tethered mobile robots controlled and powered by an operator from some distance away at the surface of the water. These vehicles all require some method for transmitting power to the surrounding water to interact with their environment, such as in thrusters for propulsion or a claw for manipulation. Many commercially available thrusters, for example, use shaft seals to transfer power through a waterproof housing to the adjacent water. Even though this works excellently for many of them, I propose that having a static seal and transmitting the power from the motor to the shaft through magnetic coupling will allow a much greater depth at which they are waterproof to be achieved. In addition, it will not require the chronic maintenance that dynamic shaft seals entail, making long scientific endeavors possible.
ContributorsHouda, Jonathon Jacob (Author) / Foy, Joseph (Thesis director) / Zhu, Haolin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137299-Thumbnail Image.png
Description
This thesis focused on grasping tasks with the goal of investigating, analyzing, and quantifying human catching trends by way of a mathematical model. The aim of this project was to study human trends in a dynamic grasping task (catching a rolling ball), relate those discovered trends to kinematic characteristics of

This thesis focused on grasping tasks with the goal of investigating, analyzing, and quantifying human catching trends by way of a mathematical model. The aim of this project was to study human trends in a dynamic grasping task (catching a rolling ball), relate those discovered trends to kinematic characteristics of the object, and use this relation to control a robot hand in real time. As an ultimate goal, it was hoped that this research will aide in furthering the bio-inspiration in robot control methods. To achieve the above goal, firstly a tactile sensing glove was developed. This instrument allowed for in depth study of human reactionary grasping movements when worn by subjects during experimentation. This sensing glove system recorded force data from the palm and motion data from four fingers. From these data sets, temporal trends were established relating to when subjects initiated grasping during each trial. Moreover, optical tracking was implemented to study the kinematics of the moving object during human experiments and also to close the loop during the control of the robot hand. Ultimately, a mathematical bio-inspired model was created. This was embodied in a two-term decreasing power function which related the temporal trend of wait time to the ball initial acceleration. The wait time is defined as the time between when the experimental conductor releases the ball and when the subject begins to initiate grasping by closing their fingers, over a distance of four feet. The initial acceleration is the first acceleration value of the object due to the force provided when the conductor throws the object. The distance over which the ball was thrown was incorporated into the model. This is discussed in depth within the thesis. Overall, the results presented here show promise for bio-inspired control schemes in the successful application of robotic devices. This control methodology will ideally be developed to move robotic prosthesis past discrete tasks and into more complicated activities.
ContributorsCard, Dillon (Co-author) / Mincieli, Jennifer (Co-author) / Artemiadis, Panagiotis (Thesis director) / Santos, Veronica (Committee member) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05