Matching Items (7)
Filtering by

Clear all filters

150297-Thumbnail Image.png
Description
Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of gri

Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of grip and load force rates during the period between initial contact with the object and object lift. However, this has not been validated in tasks that do not constrain digit placement. The purposes of this thesis were (1) to validate the hypothesis that force rate profiles are indicative of the control strategy used for object manipulation and (2) to test this hypothesis by comparing manipulation tasks performed with and without digit placement constraints. The first objective comprised two studies. In the first study an additional light or heavy mass was added to the base of the object. In the second study a mass was added, altering the object's center of mass (CM) location. In each experiment digit force rates were calculated between the times of initial digit contact and object lift. Digit force rates were fit to a Gaussian bell curve and the goodness of fit was compared across predictable and unpredictable mass and CM conditions. For both experiments, a predictable object mass and CM elicited bell shaped force rate profiles, indicative of feedforward control. For the second objective, a comparison of performance between subjects who performed the grasp task with either constrained or unconstrained digit contact locations was conducted. When digit location was unconstrained and CM was predictable, force rates were well fit to a bell shaped curve. However, the goodness of fit of the force rate profiles to the bell shaped curve was weaker for the constrained than the unconstrained digit placement condition. These findings seem to indicate that brain can generate an appropriate feedforward control strategy even when digit placement is unconstrained and an infinite combination of digit placement and force solutions exists to lift the object successfully. Future work is needed that investigates the role digit positioning and tactile feedback has on anticipatory control of object manipulation.
ContributorsCooperhouse, Michael A (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
156964-Thumbnail Image.png
Description
Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane

Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we developed a novel experimental paradigm employing a 7-DoF robot arm, which enables reliable testing of arm proprioception along arbitrary paths in 3d space, including vertical motion which has previously been neglected. A participant’s right arm was coupled to a trough held by the robot that stabilized the wrist and forearm, allowing for changes in configuration only at the elbow and shoulder. Sensitivity to imposed displacements of the endpoint of the arm were evaluated using a “same/different” task, where participant’s hands were moved 1-4 cm from a previously visited reference position. A measure of sensitivity (d’) was compared across 6 movement directions and between 2 postures. For all directions, sensitivity increased monotonically as the distance from the reference location increased. Sensitivity was also shown to be anisotropic (directionally dependent) which has implications for our understanding of the planning and control of reaching movements in 3d space.

The effect of neuromodulation on proprioceptive sensitivity was assessed using transcutaneous electrical nerve stimulation (TENS), which has been shown to have beneficial effects on human cognitive and sensorimotor performance in other contexts. In this pilot study the effects of two frequencies (30hz and 300hz) and three electrode configurations were examined. No effect of electrode configuration was found, however sensitivity with 30hz stimulation was significantly lower than with 300hz stimulation (which was similar to sensitivity without stimulation). Although TENS was shown to modulate proprioceptive sensitivity, additional experiments are required to determine if TENS can produce enhancement rather than depression of sensitivity which would have positive implications for rehabilitation of proprioceptive deficits arising from stroke and other disorders.
ContributorsKlein, Joshua (Author) / Buneo, Christopher (Thesis advisor) / Helms-Tillery, Stephen (Committee member) / Kleim, Jeffrey (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2018
136952-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136933-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134674-Thumbnail Image.png
Description
Background. Proprioception plays a large role in everyday functioning, involving both information of body position and movement (Johnson & Panayotis, 2010). Clinical assessments of proprioception are largely subjective and are not reliable measures for testing proprioception in impaired or unimpaired individuals. Recent advancements in technology and robotics have brought about

Background. Proprioception plays a large role in everyday functioning, involving both information of body position and movement (Johnson & Panayotis, 2010). Clinical assessments of proprioception are largely subjective and are not reliable measures for testing proprioception in impaired or unimpaired individuals. Recent advancements in technology and robotics have brought about new assessments that involve position matching and other paradigms. However, the results are confined to the horizontal plane and only look at a very small subset of human proprioceptive ability. Objective. The present study looks to overcome these limitations and examine differences in proprioceptive sensitivity across different directions in 3D space. Methods. Participants were recruited from Arizona State University to perform a "same-different" discrimination test using a robotic arm. Each participant was tested along two of the three directions, and within each direction, proprioception at four distances (1-4 cm) was tested. Performance was quantified using percent correct, d' analysis, and permutation testing on median and variance values. Results. Proprioceptive sensitivity was significantly greater in the up direction vs. down and back across all distances. The greatest difference in sensitivity occurred at 3 cm; permutation tests using median and variance values from percent correct and d' found statistical significance at this distance in the up vs. down and up vs. back comparisons. Conclusions. There is evidence that proprioceptive sensitivity is greater in an anti-gravity direction (up), in comparison to gravity-assisted or gravity-neutral (down and back) directions.
ContributorsPatel, Megha (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137739-Thumbnail Image.png
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
157696-Thumbnail Image.png
Description
Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a

Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a decrease of proprioceptive error magnitudes and greater endpoint accuracy. Increased focus and attention can also be correlated to neurophysiological activity in the Locus Coeruleus (LC) during a variety of mental tasks. Through non-invasive trigeminal nerve stimulation, it may be possible to affect the activity of the LC and induce improvements in arousal and attention that would assist in proprioceptive estimation. The trigeminal nerve projects to the LC through the mesencephalic nucleus of the trigeminal complex, providing a pathway similar to the effects seen from vagus nerve stimulation. In this experiment, the effect of trigeminal nerve stimulation (TNS) on proprioceptive ability is evaluated by the proprioceptive estimation error magnitude and direction, while LC activation via autonomic pathways is indirectly measured using pupil diameter, pupil recovery time, and pupil velocity. TNS decreases proprioceptive error magnitude in 59% of subjects, while having no measurable impact on proprioceptive strategy. Autonomic nervous system changes were observed in 88% of subjects, with mostly parasympathetic activation and a mixed sympathetic effect.
ContributorsOrthlieb, Gerrit Chi Luk (Author) / Helms-Tillery, Stephen (Thesis advisor) / Tanner, Justin (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019