Matching Items (507)
Filtering by

Clear all filters

151688-Thumbnail Image.png
Description
This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version

This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version was a business-as-usual traditional classroom teaching mathematics with direct instruction. The 2rd version of the course provided students with self-paced, individualized Algebra instruction with a web-based, intelligent tutor. The 3rd version of the course coupled self-paced, individualized instruction on the web-based, intelligent Algebra tutor coupled with a series of e-learning modules on self-regulated learning knowledge and skills that were distributed throughout the semester. A quasi-experimental, mixed methods evaluation design was used by assigning pre-registered, high-school remedial Algebra I class periods made up of an approximately equal number of students to one of the three study conditions or course versions: (a) the control course design, (b) web-based, intelligent tutor only course design, and (c) web-based, intelligent tutor + SRL e-learning modules course design. While no statistically significant differences on SRL skills, math achievement or motivation were found between the three conditions, effect-size estimates provide suggestive evidence that using the SRL e-learning modules based on ARCS motivation model (Keller, 2010) and Let Me Learn learning pattern instruction (Dawkins, Kottkamp, & Johnston, 2010) may help students regulate their learning and improve their study skills while using a web-based, intelligent Algebra tutor as evidenced by positive impacts on math achievement, motivation, and self-regulated learning skills. The study also explored predictive analyses using multiple regression and found that predictive models based on independent variables aligned to student demographics, learning mastery skills, and ARCS motivational factors are helpful in defining how to further refine course design and design learning evaluations that measure achievement, motivation, and self-regulated learning in web-based learning environments, including intelligent tutoring systems.
ContributorsBarrus, Angela (Author) / Atkinson, Robert K (Thesis advisor) / Van de Sande, Carla (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
153103-Thumbnail Image.png
Description
A new algebraic system, Test Algebra (TA), is proposed for identifying faults in combinatorial testing for SaaS (Software-as-a-Service) applications. In the context of cloud computing, SaaS is a new software delivery model, in which mission-critical applications are composed, deployed, and executed on cloud platforms. Testing SaaS applications is challenging because

A new algebraic system, Test Algebra (TA), is proposed for identifying faults in combinatorial testing for SaaS (Software-as-a-Service) applications. In the context of cloud computing, SaaS is a new software delivery model, in which mission-critical applications are composed, deployed, and executed on cloud platforms. Testing SaaS applications is challenging because new applications need to be tested once they are composed, and prior to their deployment. A composition of components providing services yields a configuration providing a SaaS application. While individual components

in the configuration may have been thoroughly tested, faults still arise due to interactions among the components composed, making the configuration faulty. When there are k components, combinatorial testing algorithms can be used to identify faulty interactions for t or fewer components, for some threshold 2 <= t <= k on the size of interactions considered. In general these methods do not identify specific faults, but rather indicate the presence or absence of some fault. To identify specific faults, an adaptive testing regime repeatedly constructs and tests configurations in order to determine, for each interaction of interest, whether it is faulty or not. In order to perform such testing in a loosely coupled distributed environment such as

the cloud, it is imperative that testing results can be combined from many different servers. The TA defines rules to permit results to be combined, and to identify the faulty interactions. Using the TA, configurations can be tested concurrently on different servers and in any order. The results, using the TA, remain the same.
ContributorsQi, Guanqiu (Author) / Tsai, Wei-Tek (Thesis advisor) / Davulcu, Hasan (Committee member) / Sarjoughian, Hessam S. (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
149801-Thumbnail Image.png
Description
This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also

This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also developed deep understanding of the mathematics they learned. Moreover, Rico redesigned his curricula and instruction completely so that they provided a means of support for his students to learn mathematics the way he intended. The purpose of this study was to understand the sources of Rico's effectiveness. The data for this study was generated in three phases. Phase I included videos of Rico's lessons during one semester of an Algebra II course, post-lesson reflections, and Rico's self-constructed instructional materials. An analysis of Phase I data led to Phase II, which consisted of eight extensive stimulated-reflection interviews with Rico. Phase III consisted of a conceptual analysis of the prior phases with the aim of creating models of Rico's mathematical conceptions, his conceptions of his students' mathematical understandings, and his images of instruction and instructional design. Findings revealed that Rico had developed profound personal understandings, grounded in quantitative reasoning, of the mathematics that he taught, and profound pedagogical understandings that supported these very same ways of thinking in his students. Rico's redesign was driven by three factors: (1) the particular way in which Rico himself understood the mathematics he taught, (2) his reflective awareness of those ways of thinking, and (3) his ability to envision what students might learn from different instructional approaches. Rico always considered what someone might already need to understand in order to understand "this" in the way he was thinking of it, and how understanding "this" might help students understand related ideas or methods. Rico's continual reflection on the mathematics he knew so as to make it more coherent, and his continual orientation to imagining how these meanings might work for students' learning, made Rico's mathematics become a mathematics of students--impacting how he assessed his practice and engaging him in a continual process of developing MKT.
ContributorsLage Ramírez, Ana Elisa (Author) / Thompson, Patrick W. (Thesis advisor) / Carlson, Marilyn P. (Committee member) / Castillo-Chavez, Carlos (Committee member) / Saldanha, Luis (Committee member) / Middleton, James A. (Committee member) / Arizona State University (Publisher)
Created2011
156227-Thumbnail Image.png
Description
The problem under investigation was to determine if a specific outline-style learning guide, called a Learning Agenda (LA), can improve a college algebra learning environment and if learner control can reduce the cognitive effort associated with note-taking in this instance. The 192 participants were volunteers from 47 different college

The problem under investigation was to determine if a specific outline-style learning guide, called a Learning Agenda (LA), can improve a college algebra learning environment and if learner control can reduce the cognitive effort associated with note-taking in this instance. The 192 participants were volunteers from 47 different college algebra and pre-calculus classes at a community college in the southwestern United States. The approximate demographics of this college as of the academic year 2016 – 2017 are as follows: 53% women, 47% men; 61% ages 24 and under, 39% 25 and over; 43% Hispanic/Latino, 40% White, 7% other. Participants listened to an approximately 9-minute video lecture on solving a logarithmic equation. There were four dependent variables: encoding as measured by a posttest – pretest difference, perceived cognitive effort, attitude, and notes-quality/quantity. The perceived cognitive effort was measured by a self-reported questionnaire. The attitude was measured by an attitude survey. The note-quality/quantity measure included three sub-measures: expected mathematical expressions, expected phrases, and a total word count. There were two independent factors: note-taking method and learner control. The note-taking method had three levels: the Learning Agenda (LA), unguided note-taking (Usual), and no notes taken. The learner control factor had two levels: pausing allowed and pausing not allowed. The LA resulted in significantly improved notes on all three sub-measures (adjusted R2 = .298). There was a significant main effect of learner control on perceived cognitive effort with higher perceived cognitive effort occurring when pausing was not allowed and notes were taken. There was a significant interaction effect of the two factors on the attitude survey measure. The trend toward an improved attitude in both of the note-taking levels of the note-taking factor when pause was allowed was reversed in the no notes level when pausing was allowed. While significant encoding did occur as measured by the posttest – pretest difference (Cohen’s d = 1.81), this measure did not reliably vary across the levels of either the note-taking method factor or the learner control factor in this study. Interpretations were in terms of cognitive load management, split-attention, instructional design, and note-taking as a sense-making opportunity.
ContributorsTarr, Julie Charlotte (Author) / Nelson, Brian (Thesis advisor) / Atkinson, Robert (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2018
156684-Thumbnail Image.png
Description
The mathematics test is the most difficult test in the GED (General Education Development) Test battery, largely due to the presence of story problems. Raising performance levels of story problem-solving would have a significant effect on GED Test passage rates. The subject of this formative research study is Ms. Stephens’

The mathematics test is the most difficult test in the GED (General Education Development) Test battery, largely due to the presence of story problems. Raising performance levels of story problem-solving would have a significant effect on GED Test passage rates. The subject of this formative research study is Ms. Stephens’ Categorization Practice Utility (MS-CPU), an example-tracing intelligent tutoring system that serves as practice for the first step (problem categorization) in a larger comprehensive story problem-solving pedagogy that purports to raise the level of story problem-solving performance. During the analysis phase of this project, knowledge components and particular competencies that enable learning (schema building) were identified. During the development phase, a tutoring system was designed and implemented that algorithmically teaches these competencies to the student with graphical, interactive, and animated utilities. Because the tutoring system provides a much more concrete rather than conceptual, learning environment, it should foster a much greater apprehension of a story problem-solving process. With this experience, the student should begin to recognize the generalizability of concrete operations that accomplish particular story problem-solving goals and begin to build conceptual knowledge and a more conceptual approach to the task. During the formative evaluation phase, qualitative methods were used to identify obstacles in the MS-CPU user interface and disconnections in the pedagogy that impede learning story problem categorization and solution preparation. The study was conducted over two iterations where identification of obstacles and change plans (mitigations) produced a qualitative data table used to modify the first version systems (MS-CPU 1.1). Mitigation corrections produced the second version of the MS-CPU 1.2, and the next iteration of the study was conducted producing a second set of obstacle/mitigation tables. Pre-posttests were conducted in each iteration to provide corroboration for the effectiveness of the mitigations that were performed. The study resulted in the identification of a number of learning obstacles in the first version of the MS-CPU 1.1. Their mitigation produced a second version of the MS-CPU 1.2 whose identified obstacles were much less than the first version. It was determined that an additional iteration is needed before more quantitative research is conducted.
ContributorsRitchey, ChristiAnne (Author) / VanLehn, Kurt (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Hong, Yi-Chun (Committee member) / Arizona State University (Publisher)
Created2018
Description
How do you convey what’s interesting and important to you as an artist in a digital world of constantly shifting attentions? For many young creatives, the answer is original characters, or OCs. An OC is a character that an artist creates for personal enjoyment, whether based on an already existing

How do you convey what’s interesting and important to you as an artist in a digital world of constantly shifting attentions? For many young creatives, the answer is original characters, or OCs. An OC is a character that an artist creates for personal enjoyment, whether based on an already existing story or world, or completely from their own imagination.
As creations made for purely personal interests, OCs are an excellent elevator pitch to talk one creative to another, opening up opportunities for connection in a world where communication is at our fingertips but personal connection is increasingly harder to make. OCs encourage meaningful interaction by offering themselves as muses, avatars, and story pieces, and so much more, where artists can have their characters interact with other creatives through many different avenues such as art-making, table top games, or word of mouth.

In this thesis, I explore the worlds and aesthetics of many creators and their original characters through qualitative research and collaborative art-making. I begin with a short survey of my creative peers, asking general questions about their characters and thoughts on OCs, then move to sketching characters from various creators. I focus my research to a group of seven core creators and their characters, whom I interview and work closely with in order to create a series of seven final paintings of their original characters.
ContributorsCote, Jacqueline (Author) / Button, Melissa M (Thesis director) / Dove-Viebahn, Aviva (Committee member) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131534-Thumbnail Image.png
Description
In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports

In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports promises of music industry sustainability based on increasing annual revenues in paid streaming services and artists’ high creative demand. The rate of new audio engineer entries in the sound recording subsection of the music industry is not viable to support streaming artists’ high demand to engineer new music recordings. Offering CTE programs in secondary education is rare for aspiring engineers with insufficient accessibility to pursue a post-secondary or vocational education because of financial and academic limitations. These aspiring engineers seek alternatives for receiving an informal education in audio engineering on the Internet using video sharing services like YouTube to search for tutorials and improve their engineering skills. The shortage of accessible educational materials on the Internet restricts engineers from advancing their own audio engineering education, reducing opportunities to enter a desperate job market in need of independent, home studio-based engineers. Content creators on YouTube take advantage of this situation and commercialize their own video tutorial series for free and selling paid subscriptions to exclusive content. This is misleading for newer engineers because these tutorials omit important understandings of fundamental engineering concepts. Instead, content creators teach inflexible engineering methodologies that are mostly beneficial to their own way of thinking. Content creators do not often assess the incompatibility of teaching their own methodologies to potential entrants in a profession that demands critical thinking skills requiring applied fundamental audio engineering concepts and techniques. This project analyzes potential solutions to resolve the deficiencies in online audio engineering education and experiments with structuring simple, deliverable, accessible educational content and materials to new entries in audio engineering. Designing clear, easy to follow material to these new entries in audio engineering is essential for developing a strong understanding for the application of fundamental concepts in future engineers’ careers. Approaches to creating and designing educational content requires translating complex engineering concepts through simplified mediums that reduce limitations in learning for future audio engineers.
ContributorsBurns, Triston Connor (Author) / Tobias, Evan (Thesis director) / Libman, Jeff (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133883-Thumbnail Image.png
Description
There has been a recent push for queer fiction, especially in the young adult genre, whose focus is gay and lesbian relationships. This growth is much needed in terms of visibility and the furthering of acceptance, but there are still subjects within the LGBTQ+ community that need to be addressed,

There has been a recent push for queer fiction, especially in the young adult genre, whose focus is gay and lesbian relationships. This growth is much needed in terms of visibility and the furthering of acceptance, but there are still subjects within the LGBTQ+ community that need to be addressed, including bisexual, asexual, and non-binary erasure. There are many people who claim that these identities do not exist, are labels used as a stepping stone on one's journey to discovering that they are homosexual, or are invented excuses for overtly promiscuous or prudish behavior. The existence of negative stereotypes, particularly those of non-binary individuals, is largely due to a lack of visibility and respectful representation within media and popular culture. However, there is still a dearth of non-binary content in popular literature outside of young adult fiction. Can You See Me? aims to fill the gap in bisexual, asexual, and non-binary representation in adult literature. Each of the four stories that make up this collection deals with an aspect of gender and/or sexuality that has been erased, ignored, or denied visibility in American popular culture. The first story, "We'll Grow Lemon Trees," examines bisexual erasure through the lens of sociolinguistics. A bisexual Romanian woman emigrates to Los Angeles in 1989 and must navigate a new culture, learn new languages, and try to move on from her past life under a dictatorship where speaking up could mean imprisonment or death. The second story "Up, Down, All Around," is about a young genderqueer child and their parents dealing with microaggressions, examining gender norms, and exploring personal identity through imaginary scenarios, each involving an encounter with an unknown entity and a colander. The third story, "Aces High," follows two asexual characters from the day they're born to when they are 28 years old, as they find themselves in pop culture. The two endure identity crises, gender discrimination, erasure, individual obsessions, and prejudice as they learn to accept themselves and embrace who they are. In the fourth and final story, "Mile Marker 72," a gay Mexican man must hide in plain sight as he deals with the death of his partner and coming out to his best friend, whose brother is his partner's murderer.
ContributorsOchser, Jordyn M. (Author) / Bell, Matt (Thesis director) / Free, Melissa (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133894-Thumbnail Image.png
Description
Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must

Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must navigate their new world. The original premiere run was March 27-28, 2018, original cast: Caitlin Andelora, Rikki Tremblay, and Michael Tristano Jr.
ContributorsToye, Abigail Elizabeth (Author) / Linde, Jennifer (Thesis director) / Abele, Kelsey (Committee member) / Department of Information Systems (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133896-Thumbnail Image.png
Description
After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been

After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been prepared for the difficulty of learning sales. Sales get a bad rap and very often is the last thing that young entrepreneurs want to try, but the reality is that sales is oxygen to a company and a required skill for an entrepreneur. Due to this, I compiled all of my knowledge into an e-book for young entrepreneurs starting out to learn how to open up a conversation with a prospect all the way to closing them on the phone. Instead of starting from scratch like I did, college entrepreneurs can learn the bare basics of selling their own services, even if they are terrified of sales and what it entails. In this e-book, there are tips that I have learned to deal with my anxiety about sales such as taking the pressure off of yourself and prioritizing listening more than pitching. Instead of trying to teach sales expecting people to be natural sales people, this e-book takes the approach of helping entrepreneurs that are terrified of sales and show them how they can cope with this fear and still close a client. In the future, I hope young entrepreneurs will have access to more resources that handle this fear and make it much easier for them to learn it by themselves. This e-book is the first step.
ContributorsMead, Kevin Tyler (Author) / Sebold, Brent (Thesis director) / Kruse, Gabriel (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05