Matching Items (12)
Filtering by

Clear all filters

134159-Thumbnail Image.png
DescriptionThis project is designed to generate enthusiasm for science among refugee students in hopes of inspiring them to continue learning science as well as to help them with their current understanding of their school science subject matter.
ContributorsSipes, Shannon Paige (Author) / O'Flaherty, Katherine (Thesis director) / Gregg, George (Committee member) / School of Molecular Sciences (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135432-Thumbnail Image.png
Description
Students Organize for Syria (SOS) is the student led initiative for Syria. With 18 registered chapters across the United States, this student organization is targeting a multidimensional cause by different means. Though it is now a national movement, it started off with one group at Arizona State University, with one

Students Organize for Syria (SOS) is the student led initiative for Syria. With 18 registered chapters across the United States, this student organization is targeting a multidimensional cause by different means. Though it is now a national movement, it started off with one group at Arizona State University, with one student. Zana Alattar, founder and student director of SOS, tells the story of how she took an ASU organization, Save Our Syrian Freedom (SOS Freedom), to the national level as SOS. As a pre-medical student, she also combines her work in human rights with her future in healthcare. After all, health and human rights have long maintained a synergistic relationship.
ContributorsAlattar, Zana (Author) / Graff, Sarah (Thesis director) / McClurg, Sharolyn (Committee member) / School of Molecular Sciences (Contributor) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133828-Thumbnail Image.png
Description
Dante's Divine Comedy has been around for eight centuries, and its imaginative vision of the afterlife truly resembled the ideology of 13th century. However, time has passed, and now, in 21st century, the societies have made major technological advancements that distinct themselves from the past. Consequently, with recent technology in

Dante's Divine Comedy has been around for eight centuries, and its imaginative vision of the afterlife truly resembled the ideology of 13th century. However, time has passed, and now, in 21st century, the societies have made major technological advancements that distinct themselves from the past. Consequently, with recent technology in mind, one could imagine an afterlife with robotic Minos and Cerberus, and possibly the circles of hell residing within an earth resembling death star that is controlled automatically using artificial intelligence. The symbolic representation of punishments could have been altered throughout time, and more recent criminals may be seen in the circles of hell. By identifying and correlating contemporary style of art with a classic literature such as Dante's Divine Comedy, one could better understand the essence of literature without the disconnect from current world, and appreciate the deep underlying ideology that Dante offers within his literature. Sculptures that encompass nine circles of hell and heaven would demonstrate structural aptitude and symbolic representation of what Dante would have imagined if he were to write his literature in the 21st century. Throughout the project, connection between the literature and the sculptures is observed. Some of the sculptures were meant to be abstract and some literal. Even though the medium used in each of the sculptures were different, the correlation between each sculpture unifies everything together into one theme, Dante's Divine Comedy.
ContributorsKim, David (Author) / Neubauer, Mary (Thesis director) / Harp, Hilary (Committee member) / School of Molecular Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132849-Thumbnail Image.png
Description
Within our current educational infrastructure, there’s a lack of substantial preventive care knowledge present among elementary schoolchildren. With education cuts occurring statewide, many schools are left impoverished and schools are incapable of implementing various programs to benefit their local communities. This endeavor aims to visit public and charter elementary schools

Within our current educational infrastructure, there’s a lack of substantial preventive care knowledge present among elementary schoolchildren. With education cuts occurring statewide, many schools are left impoverished and schools are incapable of implementing various programs to benefit their local communities. This endeavor aims to visit public and charter elementary schools in the Phoenix Valley to educate youth regarding easily avoidable health risks by implementing healthy eating habits and exercise. Project BandAid will immerse students ages 7-9 in hands-on activities to enhance their knowledge on hygiene, healthy eating habits, and safety. This project incorporated funding from the Woodside Community Action Grant and Barrett, the Honors College as well as the help from Alpha Epsilon Delta (AED) volunteers.
ContributorsCovarrubias, Sidney Alicia (Co-author) / Kothari, Karishma (Co-author) / John, Benson (Co-author) / Fette, Donald (Thesis director) / Holechek, Susan (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / School for the Future of Innovation in Society (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
135797-Thumbnail Image.png
DescriptionThis creative project provides documentation and an exploration of my interactions with individuals encountered while hitchhiking up the west coast.
ContributorsGerber, Evan Howard (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / W. P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135814-Thumbnail Image.png
Description
The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the

The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the path to its synthesis. While Chapter 1 discusses DNA and Uracil-DNA Glycosylase with regards to the base excision repair pathway, Chapter 2 focuses on chemical synthesis of an intermediate in the pathway to the synthesis of TNA, an analogous structure with a different saccharide in the sugar-phosphate backbone.
Chapter 1 covers the research under Dr. Levitus. Four oligonucleotides were reacted for zero, five, and thirty minutes with uracil-DNA glycosylase and subsequent addition of piperidine. These oligonucleotides were chosen based on their torsional rigidities as predicted by past research and predictions. The objective was to better understand the relationship between the sequence of DNA surrounding the incorrect base and the enzyme’s ability to remove said base in order to prepare the DNA for the next step of the base excision repair pathway. The first pair of oligonucleotides showed no statistically significant difference in enzymatic efficiency with p values of 0.24 and 0.42, while the second pair had a p value of 0.01 at the five-minute reaction. The second pair is currently being researched at different reaction times to determine at what point the enzyme seems to equilibrate and react semi-equally with all sequences of DNA.
Chapter 2 covers the research conducted under Dr. Chaput. Along the TNA synthesis pathway, the nitrogenous base must be added to the threofuranose sugar. The objective was to optimize the original protocol of Vorbrüggen glycosylation and determine if there were better conditions for the synthesis of the preferred regioisomer. This research showed that toluene and ortho-xylene were more preferable as solvents than the original anhydrous acetonitrile, as the amount of preferred isomer product far outweighed the amount of side product formed, as well as improving total yield overall. The anhydrous acetonitrile reaction had a final yield of 60.61% while the ortho-xylene system had a final yield of 94.66%, an increase of approximately 32%. The crude ratio of preferred isomer to side product was also improved, as it went from 18% undesired in anhydrous acetonitrile to 4% undesired in ortho-xylene, both values normalized to the preferred regioisomer.
ContributorsTamirisa, Ritika Sai (Author) / Levitus, Marcia (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Windman, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a

Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a ꞵ-cyclodextrin platform can be modified through a few-step reaction process to develop a ꞵ-cyclodextrin-DBCO-GFP nanobody. The findings of this few-step reaction support the general approach of conjugating the ꞵ-cyclodextrin derivative to GPF nanobody for developing a cyclodextrin antiviral scaffold.
ContributorsTaniguchi, Tohma (Author) / Hariadi, Rizal (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Sasmal, Ranjan (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
132053-Thumbnail Image.png
Description
University College Groningen, in the Netherlands, is one of two Barrett Exchange programs. These programs allow for Barrett students to receive honors credit for their classes while studying abroad. While these programs are intriguing, there are no resources on the Barrett website that provide student accounts of the experiences. For

University College Groningen, in the Netherlands, is one of two Barrett Exchange programs. These programs allow for Barrett students to receive honors credit for their classes while studying abroad. While these programs are intriguing, there are no resources on the Barrett website that provide student accounts of the experiences. For the UCG exchange, there was only a link to the UCG website which was not extremely helpful for getting an understanding of what you will truly be getting yourself into while abroad. The solution that was decided upon was to create a vlog website for Barrett students to use as a resource when looking into the program. The site contains both person experiences from students, as well has helpful tips and tricks of how to maneuver your stay in the Netherlands. Overall, there were 8 videos created and 9 posts that can be used as resources for future Barrett students. The ‘Who are We?’, ‘Why a Barrett Exchange?’, ‘First Impressions and Adjusting to the Dutch Lifestyle’, and ‘Welcome Weeks’ posts contain testimony from two other Barrett students and myself who went on the exchange during the Fall, 2018 semester. The ‘Vistmarkt’ and ‘UCG Tour’ posts contain videos that show students places they will be able to venture to in the Netherlands. The ‘Travels Tips’ and ‘UCG Curriculum’ posts contain videos that have numerous tips for students who choose this exchange as their study abroad program they wish to participate in. The final post is called ‘Next Steps’ and it is meant for future students who wish to update and extend the knowledge that is presents on the website so that students can get the most up-to-date information. This website was created to give Barrett students a better understanding of the life-changing experience they are about to embark on.
ContributorsBarda, Taylor (Author) / Scott Lynch, Jacquelyn (Thesis director) / Chiu, Roland (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
165433-Thumbnail Image.png
Description

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in 2D as on textbooks and lecture notes it can be quite hard to understand those vital 3D concepts. ARsome Chemistry is an app that aims to utilize AR to display complex and simple molecules in 3D to actively teach students these concepts through quizzes and other features. The ARsome chemistry app uses image target recognition to allow students to hand-draw or print line angle structures or chemical formulas of molecules and then scan those targets to get 3D representation of molecules. Students can use their fingers and the touch screen to zoom, rotate, and highlight different portions of the molecule to gain a better understanding of the molecule's 3D structure. The ARsome chemistry app also features the ability to utilize image recognition to allow students to quiz themselves on drawing line-angle structures and show it to the camera for the app to check their work. The ARsome chemistry app is an accessible and cost-effective study aid platform for students for on demand, interactive, 3D representations of complex molecules.

ContributorsEvans, Brandon (Author) / LiKamWa, Robert (Thesis director) / Johnson, Mina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05