Matching Items (44)
Filtering by

Clear all filters

Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsJones, Cassity Rachelle (Co-author) / Kuta, Tiffany (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137202-Thumbnail Image.png
Description
Zoos are doing amazing projects to help wildlife globally and locally. A lot of people aren't aware of what goes on with these conservation projects because much of it happens behind the scenes. So I decided to make a film to explain how zoos facilitate our world's wildlife. My film

Zoos are doing amazing projects to help wildlife globally and locally. A lot of people aren't aware of what goes on with these conservation projects because much of it happens behind the scenes. So I decided to make a film to explain how zoos facilitate our world's wildlife. My film can be viewed at this link: https://www.youtube.com/watch?v=_JmLGf138zY
ContributorsRossman, Chloe June (Author) / Sandler, Kevin (Thesis director) / Wells, Stuart (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Film, Dance and Theatre (Contributor)
Created2014-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
‘why we bend' a Bachelor of Fine Arts honors thesis exhibition by Ximenna Hofsetz and Tiernan Warner brings together installation, digital, sculptural, and printed artwork. The main focus concerns memory; and its vague, formless, and hazy nature. The work also examines what would happen if cognitive space could

‘why we bend' a Bachelor of Fine Arts honors thesis exhibition by Ximenna Hofsetz and Tiernan Warner brings together installation, digital, sculptural, and printed artwork. The main focus concerns memory; and its vague, formless, and hazy nature. The work also examines what would happen if cognitive space could be physically mapped? What would it look like in sculptural form? Memory erodes and distorts with time. We influence our memories as much as they affect us. Thus, just as relationships are ever-changing, and our memories of those we interact with constantly shifting, our relationships with our own memories are malleable and evolve through time. This transient nature of memory is depicted in the various stylistic means of this exhibition by referencing time and space as well as personal memories and ephemera in both concrete and abstract ways. ‘why we bend’ implements a variety of multimedia techniques to examine recollection and its hold on us.
ContributorsHofsetz, Ximenna Cedella (Author) / Gutierrez, Rogelio (Thesis director) / Hood, Mary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Art (Contributor)
Created2014-12
136693-Thumbnail Image.png
Description
A Guiding Hand: Grief Response in Young Adults works to guide young adults thought the grieving process after the traumatic death of a loved one. It goes through the steps of grieving and what a person can expect when they suddenly lose someone dear. Written from the point of view

A Guiding Hand: Grief Response in Young Adults works to guide young adults thought the grieving process after the traumatic death of a loved one. It goes through the steps of grieving and what a person can expect when they suddenly lose someone dear. Written from the point of view of someone who had lost their best friend in a murder/suicide, A Guiding Hand, shares a personal view that is often missing in other books on grief. This piece works to prepare other young adults for the unexpected emotions that are associated with grief. It also works to provide coping strategies to help recover from a traumatic loss in a healthy manner and to put people in touch with resources they may not know exist in order to help with healing.
ContributorsSmith, Madison Ann (Author) / Foy, Joseph (Thesis director) / Shaeffer, John (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
136585-Thumbnail Image.png
Description
Although the number of women earning college degrees and entering the workforce is increasing, a gender gap persists at top leadership positions. Women are faced with numerous challenges throughout the talent pipeline, challenges that often drive women out of the workforce. This paper looks at the power of mentoring and

Although the number of women earning college degrees and entering the workforce is increasing, a gender gap persists at top leadership positions. Women are faced with numerous challenges throughout the talent pipeline, challenges that often drive women out of the workforce. This paper looks at the power of mentoring and how women, particularly young women, have the potential to overcome these challenges through a successful mentoring relationship. We use examples of successful mentoring programs at the corporate and university level to support the development of a mentoring program at the high school level. Our paper presents the research and development process behind the Young Women in Leadership (YWiL) Workshop, a half-day event that focused on bringing awareness to the importance of mentoring and leadership at the high school level while providing young women with the confidence and knowledge to begin to establish their own mentoring relationships.
ContributorsRust, Brenna (Co-author) / Myers, Sheridan (Co-author) / Desch, Tim (Thesis director) / Kalika, Dale (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Accountancy (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / WPC Graduate Programs (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05
137224-Thumbnail Image.png
Description
The ability to edit chromosomal regions is an important tool for the study of gene function and the ability to engineer synthetic gene networks. CRISPR-Cas systems, a bacterial RNA-guided immune system against foreign nucleic acids, have recently been engineered for a plethora of genome engineering and transcriptional regulation applications. Here

The ability to edit chromosomal regions is an important tool for the study of gene function and the ability to engineer synthetic gene networks. CRISPR-Cas systems, a bacterial RNA-guided immune system against foreign nucleic acids, have recently been engineered for a plethora of genome engineering and transcriptional regulation applications. Here we employ engineered variants of CRISPR systems in proof-of-principle experiments demonstrating the ability of CRISPR-Cas derived single-DNA-strand cutting enzymes (nickases) to direct host-cell genomic recombination. E.coli is generally regarded as a poorly recombinogenic host with double-stranded DNA breaks being highly lethal. However, CRISPR-guided nickase systems can be easily programmed to make very precise, non-lethal, incisions in genomic regions directing both single reporter gene and larger-scale recombination events deleting up to 36 genes. Genome integrated repetitive elements of variable sizes can be employed as sites for CRISPR induced recombination. We project that single-stranded based editing methodologies can be employed alongside preexisting genome engineering techniques to assist and expedite metabolic engineering and minimalized genome research.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis director) / Haynes, Karmella (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
Description

There is a wide intersection where animal and human lives interact or mimic each other behaviorally or biologically. A lot of the products that are part of our day-to-day were first validated by animals, and eventually found their way to us. From food to beauty products to scientific developments, animals

There is a wide intersection where animal and human lives interact or mimic each other behaviorally or biologically. A lot of the products that are part of our day-to-day were first validated by animals, and eventually found their way to us. From food to beauty products to scientific developments, animals deal with a lot behind the scenes. Some humans are cognizant of what is happening backstage, while others only see the final presentation. Either way, all of us have our opinions in support or against animal treatment. The project is heavily inspired from my experience in a neurorehabilitation lab, so the foundation is similar to the structure and function of neurons. Through this project, I am focusing on one aspect of this debate, which is animal testing in the scietific setting. The goal of the project is not to force the viewer to choose one side, but to understand the big picture and the reasoning of the opposing side.

ContributorsSharma, Bhavya (Author) / Beiner, Susan (Thesis director) / Roberson, Robert (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135928-Thumbnail Image.png
Description
The goal of this project was to create a card game that would quickly and easily allow medical professionals to learn important information. This project seeks to advance ways in which medical staff gain information about disease outbreaks through the creation of a card game which teaches players the proper

The goal of this project was to create a card game that would quickly and easily allow medical professionals to learn important information. This project seeks to advance ways in which medical staff gain information about disease outbreaks through the creation of a card game which teaches players the proper steps and procedure to triage and treat patients who are suspected to have Ebola Hemorrhagic Fever, which was not done properly during the recent outbreak. To create this game, research was conducted on the information given by the Center for Disease Control and Prevention (CDC) on the various steps to triaging those who were suspected of having Ebola. Various prototypes of the game were made and tested to optimize the win-lose ratio while still being an enjoyable game to play. This card game is fast-paced, small, and can be played either individually or with more than one person. It is loosely based off of Solitaire. This game has gone through three prototypes of the cards as well as a few brief testing periods. Through the methods and procedure used in this game's creation, it has been concluded that this method is a great way to easily teach players a proper procedure, and that this method of game can be applied to other disease breakouts and even to other fields where information must be learned quickly. Future steps for this game include improving the graphic art used in the cards, and continuing on to create a smartphone application.
ContributorsHenriksen, Carissa (Co-author) / Pratt, Breanna (Co-author) / LaBelle, Jeffrey (Thesis director) / Coursen, Jerry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12