Matching Items (19)
Filtering by

Clear all filters

136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136933-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136952-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137147-Thumbnail Image.png
Description
Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance,

Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance, and cell culture growth assays were used to characterize the physical, magnetic, and cytotoxic properties of candidate nanoprobes. The nanoprobes displayed thermosensitve MR properties with decreasing relaxivity with temperature. Future work will be focused on generating and characterizing photo-active analogues of the nanoprobes that could be used for both treatment of tissues and assessment of therapy.
ContributorsHussain, Khateeb Hyder (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
Description

There is a wide intersection where animal and human lives interact or mimic each other behaviorally or biologically. A lot of the products that are part of our day-to-day were first validated by animals, and eventually found their way to us. From food to beauty products to scientific developments, animals

There is a wide intersection where animal and human lives interact or mimic each other behaviorally or biologically. A lot of the products that are part of our day-to-day were first validated by animals, and eventually found their way to us. From food to beauty products to scientific developments, animals deal with a lot behind the scenes. Some humans are cognizant of what is happening backstage, while others only see the final presentation. Either way, all of us have our opinions in support or against animal treatment. The project is heavily inspired from my experience in a neurorehabilitation lab, so the foundation is similar to the structure and function of neurons. Through this project, I am focusing on one aspect of this debate, which is animal testing in the scietific setting. The goal of the project is not to force the viewer to choose one side, but to understand the big picture and the reasoning of the opposing side.

ContributorsSharma, Bhavya (Author) / Beiner, Susan (Thesis director) / Roberson, Robert (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135928-Thumbnail Image.png
Description
The goal of this project was to create a card game that would quickly and easily allow medical professionals to learn important information. This project seeks to advance ways in which medical staff gain information about disease outbreaks through the creation of a card game which teaches players the proper

The goal of this project was to create a card game that would quickly and easily allow medical professionals to learn important information. This project seeks to advance ways in which medical staff gain information about disease outbreaks through the creation of a card game which teaches players the proper steps and procedure to triage and treat patients who are suspected to have Ebola Hemorrhagic Fever, which was not done properly during the recent outbreak. To create this game, research was conducted on the information given by the Center for Disease Control and Prevention (CDC) on the various steps to triaging those who were suspected of having Ebola. Various prototypes of the game were made and tested to optimize the win-lose ratio while still being an enjoyable game to play. This card game is fast-paced, small, and can be played either individually or with more than one person. It is loosely based off of Solitaire. This game has gone through three prototypes of the cards as well as a few brief testing periods. Through the methods and procedure used in this game's creation, it has been concluded that this method is a great way to easily teach players a proper procedure, and that this method of game can be applied to other disease breakouts and even to other fields where information must be learned quickly. Future steps for this game include improving the graphic art used in the cards, and continuing on to create a smartphone application.
ContributorsHenriksen, Carissa (Co-author) / Pratt, Breanna (Co-author) / LaBelle, Jeffrey (Thesis director) / Coursen, Jerry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
132400-Thumbnail Image.png
Description
The Honors Creative Project evolved drastically from start to finish, despite its origin remaining the same. My core goal in this project was to connect two seemingly mutually exclusive aspects of my life, engineering and dance. After conducting an IRB study and using data from my own personal experiences, I

The Honors Creative Project evolved drastically from start to finish, despite its origin remaining the same. My core goal in this project was to connect two seemingly mutually exclusive aspects of my life, engineering and dance. After conducting an IRB study and using data from my own personal experiences, I was able to see how dance had in fact made me a better engineer. There were skills that I gained and learned in dance that were directly applicable to engineering, and I believe will be critical to my success as an engineer. As the focal point of the project angled towards myself, I had to look deeply into who I am and how I reached this point. I conducted self-reflections on various aspects of my current life and also on the struggles and hardships I overcame during my years at ASU. From these reflections, I learned a lot about myself and how my personal identity has evolved. This identity evolution became the backbone behind my thesis defense. I took my research and self-reflections and designed a series of artwork that I personally designed and painted myself. I my engineering side to conduct the research and collect the data, and then used my artistic side to present my findings to the public in a way that attracted and audience and caused others to reflect upon their own identities.
ContributorsArizmendi, Romann Fuentes (Author) / Olarte, David (Thesis director) / Welz, Matt (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132543-Thumbnail Image.png
Description
Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering

Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering was mapped and area was measured using AMIRA image processing and the trends in
these layers at the proximal, middle, and distal portions of the arms were analyzed. A total of 39
arms from 6 specimens were scanned to give 112 total imaged sections (38 proximal, 37 middle,
37 distal), from which to ascertain and study the possible differences in musculature. The
images revealed significant increases in the internal longitudinal muscle layer percentages
between the proximal and middle, proximal and distal, and middle and distal sections of the
arms. These structural differences are hypothesized to be used for rapid retraction of the distal
segment when encountering predators or noxious stimuli. In contrast, a significant decrease in
the transverse muscle layer was found when comparing the same sections. These structural
differences are hypothesized to be a result of bending behaviors during retraction. Additionally,
the internal longitudinal layer was separately studied orally, toward the sucker, and aborally,
away from the sucker. The significant differences in oral and aboral internal longitudinal
musculature in proximal, middle, and distal sections is hypothesized to support the pseudo-joint
functionality displayed in octopus fetching behaviors. The results indicate that individual
octopus arm morphology is more unique than previously thought and supports that internal
structural differences exist to support behavioral functionality.
ContributorsCummings, Sheldon Daniel (Author) / Fisher, Rebecca (Thesis director) / Marvi, Hamidreza (Committee member) / Cherry, Brian (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The goal of this creative project is to document my grandmother’s traditional Gujarati recipes with the hopes of preserving her life and passion for cooking. This process included library research to investigate the history of Indian and Gujarati cuisine, spending time in the kitchen documenting the recipes in their entirety,

The goal of this creative project is to document my grandmother’s traditional Gujarati recipes with the hopes of preserving her life and passion for cooking. This process included library research to investigate the history of Indian and Gujarati cuisine, spending time in the kitchen documenting the recipes in their entirety, practicing them on my own, writing the cookbook and including passages that weave in the history, my grandmother’s stories, and techniques and tools. After completing this process, the significant findings related to my grandmother’s life and her journey from birth to now. Her marriage to my grandfather at a young age, her journey and those who influenced her ability to cook, and her impact on my family were all effects that I had understood and known during my experiences with my grandmother. In this journey, I learned more about her thoughts and experiences that I never knew before. Our relationship has deepened ten-fold and while she may not be with me forever, I now have a tangible part of her that I can keep with me for the rest of my life.
ContributorsPatel, Ekta (Author) / Graff, Sarah (Thesis director) / Jacobs, Mark (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132964-Thumbnail Image.png
Description
In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve surgical outcomes via more structured surgical planning. It is a global effort, with more than 20 sites across 5 continents. The targeted populations for this study include patients whose epilepsy stems from Focal Cortical Dysplasia. Focal Cortical Dysplasia is an abnormality of cortical development, and causes most of the drug-resistant epilepsy. Currently, the creators of MELD have developed a set of protocols which wrap various
commands designed to streamline post-processing of MRI images. Using this partnership, the Applied Neuroscience and Technology Lab at PCH has been able to complete production of a post-processing pipeline which integrates locally sourced smoothing techniques to help identify lesions in patients with evidence of Focal Cortical Dysplasia. The end result is a system in which a patient with epilepsy may experience more successful post-surgical results due to the
combination of a lesion detection mechanism and the radiologist using their trained eye in the presurgical stages. As one of the main points of this work is the global aspect of it, Barrett thesis funding was dedicated for a trip to London in order to network with other MELD project collaborators. This was a successful trip for the project as a whole in addition to this particular thesis. The ability to troubleshoot problems with one another in a room full of subject matter
experts allowed for a high level of discussion and learning. Future work includes implementing machine learning approaches which consider all morphometry parameters simultaneously.
ContributorsHumphreys, Zachary William (Author) / Kodibagkar, Vikram (Thesis director) / Foldes, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05