Matching Items (12)
Filtering by

Clear all filters

135425-Thumbnail Image.png
Description
The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor edge detection method was therefore developed to realize an edge detector directly from spectral data. This thesis explores the possibilities of detecting edges from the phase of the spectral data, that is, without the magnitude of the sampled spectral data. Prior work has demonstrated that the spectral phase contains particularly important information about underlying features in a signal. Furthermore, the concentration factor method yields some insight into the detection of edges in spectral phase data. An iterative design approach was taken to realize an edge detector using only the spectral phase data, also allowing for the design of an edge detector when phase data are intermittent or corrupted. Problem formulations showing the power of the design approach are given throughout. A post-processing scheme relying on the difference of multiple edge approximations yields a strong edge detector which is shown to be resilient under noisy, intermittent phase data. Lastly, a thresholding technique is applied to give an explicit enhanced edge detector ready to be used. Examples throughout are demonstrate both on signals and images.
ContributorsReynolds, Alexander Bryce (Author) / Gelb, Anne (Thesis director) / Cochran, Douglas (Committee member) / Viswanathan, Adityavikram (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136450-Thumbnail Image.png
Description
"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie

"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie narrate their stories through dialogue. The authors use this narrative model to archive their college experience at ASU. Representing creative nonfiction through comics yields an amalgamated format that can be challenging for both the writers to produce as well as for the readers to consume. Ultimately, the project serves as an attempt to test whether or not the comic medium can stand by itself as an appropriate format to express creative nonfictional narratives without becoming a diluted combination of its purer predecessors.
Created2015-05
133873-Thumbnail Image.png
Description
This documentary shows how what we eat affects our planet. Meat and dairy consumption is the number one pollutant to the environment and yet it is often not discussed among environmentalists. There is so much devastation taking place on our planet due the animal agriculture industry: air pollution, and water

This documentary shows how what we eat affects our planet. Meat and dairy consumption is the number one pollutant to the environment and yet it is often not discussed among environmentalists. There is so much devastation taking place on our planet due the animal agriculture industry: air pollution, and water contamination, destruction of the the Amazon rainforests. Natural resources, such as water - it takes one thousand gallons of water to produce one gallon of milk - are being over consumed. Land is being cleared of trees at a massive scale in the Amazon to make more room for land to raise livestock and grow its feed. Following the stories and experiences of several ASU students and other community members, the documentary highlights this connection between food and its effects on the environment and what people can do to make a difference.
ContributorsKoka, Vaishnavi (Author) / Barca, Lisa (Thesis director) / Meloy, Elizabeth (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137020-Thumbnail Image.png
Description
In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this

In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this ill-posed problem. Two such algorithms were examined: alternating projections, utilizing iterative Fourier transforms with manipulations performed in each domain on every iteration, and phase lifting, converting the problem to that of trace minimization, allowing for the use of convex optimization algorithms to perform the signal recovery. These recovery algorithms were compared on a basis of robustness as a function of signal-to-noise ratio. A second problem examined was that of unimodular polyphase radar waveform design. Under a finite signal energy constraint, the maximal energy return of a scene operator is obtained by transmitting the eigenvector of the scene Gramian associated with the largest eigenvalue. It is shown that if instead the problem is considered under a power constraint, a unimodular signal can be constructed starting from such an eigenvector that will have a greater return.
ContributorsJones, Scott Robert (Author) / Cochran, Douglas (Thesis director) / Diaz, Rodolfo (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137081-Thumbnail Image.png
Description
Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK)

Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK) signal, quadrature phase-shift keying (QPSK) signal, or digital terrestrial television (DTTV) signal. A scenario is then created using user defined parameters that simulates reception of the original signal on two different channels, a reference channel and a surveillance channel. The signal on the surveillance channel is delayed and Doppler shifted according to a point target scattering profile. An ambiguity function detector is implemented to identify the time delays and Doppler shifts associated with reflections off of the targets created. The results of an example are included in this report to demonstrate the simulation capabilities.
ContributorsScarborough, Gillian Donnelly (Author) / Cochran, Douglas (Thesis director) / Berisha, Visar (Committee member) / Wang, Chao (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
Description
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of

This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions.
ContributorsLeBeau, Edward Sanroma (Author) / Goryll, Michael (Thesis director) / Bowden, Stuart (Committee member) / Dauksher, Bill (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite

We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite and (ii) optical images for the same area as the SAR images collected from the Sentinel-2 satellite. We utilize classical neural networks to classify four classes of images. We then use Quantum Convolutional Neural Networks and deep learning techniques to take advantage of machine learning to help the system train, learn, and identify at a higher classification accuracy. A hybrid Quantum-classical model that is trained on the Sentinel1-2 dataset is proposed, and the performance is then compared against the classical in terms of classification accuracy.

ContributorsMiller, Leslie (Author) / Spanias, Andreas (Thesis director) / Uehara, Glen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
132777-Thumbnail Image.png
Description
The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.
ContributorsLee, Byeong Mok (Co-author) / Xi, Andrew Jinchi (Co-author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Baumann, Alicia (Committee member) / Cochran, Douglas (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132785-Thumbnail Image.png
Description
The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.
ContributorsXi, Andrew Jinchi (Co-author) / Lee, Matthew Byeongmok (Co-author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Cochran, Douglas (Committee member) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05