Matching Items (12)
Filtering by

Clear all filters

133717-Thumbnail Image.png
Description
Engineering is a heavily male-dominated field and females are significantly less likely to choose an engineering-related major or career path. At the age of six years old, females start believing that their male peers are smarter than them, leading them to pursue less ambitious careers. The children's book Lyla B.

Engineering is a heavily male-dominated field and females are significantly less likely to choose an engineering-related major or career path. At the age of six years old, females start believing that their male peers are smarter than them, leading them to pursue less ambitious careers. The children's book Lyla B. An Engineering Legacy was created to encourage more young girls to discover their own potential and pursue engineering as a career. To explore the efficacy of the book on its target consumers, a pilot study was performed with first and second grade children. The participants' engineering knowledge; fixed and failure mindset beliefs; STEM (Science, Technology, Engineering, and Math) interest, competency, and career aspirations; and stereotype beliefs were evaluated before and after being read the book to determine if the story has a positive impact on children. Additionally, the satisfaction of the participants towards both the book and main character were analyzed quantitatively and qualitatively. Overall, the results of the study suggest that the book has a positive impact on the interest and competency of STEM fields and the stereotype beliefs that the children had towards engineers. The study also suggests that the book decreases fixed and failure mindsets and that the participants were satisfied with the overall concept of the book and main character, Lyla.
ContributorsPiatak, Catherine (Co-author) / Seelhammer, Marissa Leigh (Co-author) / Torrence, Kelly (Co-author) / Miller, Cindy (Thesis director) / Jordan, Shawn (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133879-Thumbnail Image.png
Description
In this creative project, our goal was to establish a student lead service organization dedicated to raising money and awareness for a selected medical issue through an interactive carnival event. In doing so, we were able to identify the potential obstacles and pathways that are required for service organizations within

In this creative project, our goal was to establish a student lead service organization dedicated to raising money and awareness for a selected medical issue through an interactive carnival event. In doing so, we were able to identify the potential obstacles and pathways that are required for service organizations within Arizona State University. Our experience provides a guideline for future students looking to organize charitable events on campus. This paper discusses several essential skills for running a charitable student organization, including establishing a brand, managing finances, cultivating business relationships, and marketing the cause. It is our hope that future students can learn from our experience and find success in similar endeavors.
ContributorsStoddard, Stacy Dawn (Co-author) / Wong, Brittney (Co-author) / Hultsman, Wendy (Thesis director) / Holland-Malcom, Jan (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136851-Thumbnail Image.png
Description
Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported

Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported and excreted from the body. Using the of morphine and a standard compartment approach this thesis aimed at projecting pharmacokinetics trends of morphine overtime. A Matlab compartment model predicting the transport of morphine through the body can contribute to a better understanding of the concentrations at the systemic level, specifically with respect to a CSF, and what happens when you compare an intravenous injection to a local delivery. Other studies and models commonly utilized patient data over small periods of time2,3,5. An extended period of time will provide information into morphine’s time course after surgery. This model focuses on a compartmentalization of the major organs and the use of a simple Mechalis-Menten enzyme kinetics for the metabolites in the liver. Our results show a CSF concentration of about 1.086×〖10〗^(-12) nmol/L in 6 weeks and 1.0097×〖10〗^(-12) nmol/L in 12 weeks. The concentration profiles in this model are similar to what was expected. The implications of this suggest that patients who reported effects of morphine paste, a locally administered opioid, weeks after the surgery were due to other reasons. In creating a model we can determine important variables and dosage information. This information allows for a greater understanding of what is happening in the body and how to improve surgical outcomes. We propose this study has implications in general research in the pharmacokinetics and dynamics of pharmacology through the body.
ContributorsJacobs, Danielle Renee (Author) / Caplan, Michael (Thesis director) / Giers, Morgan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
133517-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002

Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002 to 2006 are due to TBI [8]. The brain's natural defense, the Blood Brain Barrier (BBB), prevents the entry of most substances into the brain through the blood stream, including medicines administered to treat TBI [11]. TBI may cause the breakdown of the BBB, and may result in increased permeability, providing an opportunity for NPs to enter the brain [3,4]. Dr. Stabenfeldt's lab has previously established that intravenously injected nanoparticles (NP) will accumulate near the injury site after focal brain injury [4]. The current project focuses on confirmation of the accumulation or extravasation of NPs after brain injury using 2-photon microscopy. Specifically, the project used controlled cortical impact injury induced mice models that were intravenously injected with 40nm NPs post-injury. The MATLAB code seeks to analyze the brain images through registration, segmentation, and intensity measurement and evaluate if fluorescent NPs will accumulate in the extravascular tissue of injured mice models. The code was developed with 2D bicubic interpolation, subpixel image registration, drawn dimension segmentation and fixed dimension segmentation, and dynamic image analysis. A statistical difference was found between the extravascular tissue of injured and uninjured mouse models. This statistical difference proves that the NPs do extravasate through the permeable cranial blood vessels in injured cranial tissue.
ContributorsIrwin, Jacob Aleksandr (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133991-Thumbnail Image.png
Description
The novella Flicker by Rachel Ponstein is a climate fiction story. It draws influence from the post-apocalyptic and dystopian genres as well as classic gothic literature. The story utilizes elements of gothic literature including Freud's Uncanny, uneven framing, and bildungsroman. It also utilizes subhuman species to incite conversation about the

The novella Flicker by Rachel Ponstein is a climate fiction story. It draws influence from the post-apocalyptic and dystopian genres as well as classic gothic literature. The story utilizes elements of gothic literature including Freud's Uncanny, uneven framing, and bildungsroman. It also utilizes subhuman species to incite conversation about the importance of perspective and the use of an alternative lens on the post-Reckoning world. The disaster story is ambiguous to focus the reader on the importance of the characters and their progress throughout the journey rather than the overall plotline. The analysis below serves as an explanation for the intentional decisions made to fit a sub-genre and engage the reader in an intellectual conversation about the issues broached.
ContributorsPonstein, Rachel Kay (Author) / Fette, Donald (Thesis director) / Hoyt, Heather (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134994-Thumbnail Image.png
Description
With dwindling water resources due to drought and other pressures, water utilities are seeking to tap into alternative water sources as a means to improve water sustainability. Reclaimed water consists of treated wastewater and is widely used for non-potable purposes, such as irrigation, both agricultural and recreational. However, the reclaimed

With dwindling water resources due to drought and other pressures, water utilities are seeking to tap into alternative water sources as a means to improve water sustainability. Reclaimed water consists of treated wastewater and is widely used for non-potable purposes, such as irrigation, both agricultural and recreational. However, the reclaimed water distribution system can be subject to substantial regrowth of microorganisms, including opportunistic pathogens, even following rigorous disinfection. Factors that can influence regrowth include temperature, organic carbon levels, disinfectant type, and the time transported (i.e., water age) in the system. One opportunistic pathogen (OP) that is critical to understanding microbial activity in both reclaimed and drinking water distribution systems is Acanthamoeba. In order to better understand the potential for this amoeba to proliferate in reclaimed water systems and influence other OPs, a simulated reclaimed water distribution system was studied. The objective of this study was to compare the prevalence of Acanthamoeba and one of its endosymbionts, Legionella, across varying assimilable organic carbon (AOC) levels, temperatures, disinfectants, and water ages in a simulated reclaimed water distribution system. The results of the study showed that cooler temperatures, larger water age, and chlorine conditions yielded the lowest detection of Acanthamoeba gene copies per mL or cm2 for bulk water and biofilm samples, respectively.
ContributorsDonaldson, Kandace (Author) / Ankeny, Casey (Thesis director) / Edwards, Marc (Committee member) / Pruden, Amy (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135928-Thumbnail Image.png
Description
The goal of this project was to create a card game that would quickly and easily allow medical professionals to learn important information. This project seeks to advance ways in which medical staff gain information about disease outbreaks through the creation of a card game which teaches players the proper

The goal of this project was to create a card game that would quickly and easily allow medical professionals to learn important information. This project seeks to advance ways in which medical staff gain information about disease outbreaks through the creation of a card game which teaches players the proper steps and procedure to triage and treat patients who are suspected to have Ebola Hemorrhagic Fever, which was not done properly during the recent outbreak. To create this game, research was conducted on the information given by the Center for Disease Control and Prevention (CDC) on the various steps to triaging those who were suspected of having Ebola. Various prototypes of the game were made and tested to optimize the win-lose ratio while still being an enjoyable game to play. This card game is fast-paced, small, and can be played either individually or with more than one person. It is loosely based off of Solitaire. This game has gone through three prototypes of the cards as well as a few brief testing periods. Through the methods and procedure used in this game's creation, it has been concluded that this method is a great way to easily teach players a proper procedure, and that this method of game can be applied to other disease breakouts and even to other fields where information must be learned quickly. Future steps for this game include improving the graphic art used in the cards, and continuing on to create a smartphone application.
ContributorsHenriksen, Carissa (Co-author) / Pratt, Breanna (Co-author) / LaBelle, Jeffrey (Thesis director) / Coursen, Jerry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135469-Thumbnail Image.png
Description
The purpose of this creative project was to establish the foundation of an educational program that teaches financial literacy to the local homeless population. The name of this program is stillHUMAN. The project consisted of two parts, a needs analysis and a prototyping phase. The needs analysis was conducted at

The purpose of this creative project was to establish the foundation of an educational program that teaches financial literacy to the local homeless population. The name of this program is stillHUMAN. The project consisted of two parts, a needs analysis and a prototyping phase. The needs analysis was conducted at the Phoenix Rescue Mission Center, a faith-based homeless shelter that caters to male "clients", through written surveys and one-on-one interviews. Before interviewing the clients, the team acquired IRB approval as well as consent from the Center to carry out this study. These needs were then organized into a House of Quality. We concluded from Part 1 that we would need to create 3 - 7-minute-long video modules that would be available on an online platform and covered topics including professional development, budgeting, credit, and Internet literacy. In order to commence Part 2, each team member recorded a video module. These three videos collectively conveyed instruction regarding how to write a resume, use the Internet and fill out an application online, and how to budget money. These videos were uploaded to YouTube and shown to clients at Phoenix Rescue Mission, who were each asked to fill out a feedback survey afterwards. The team plans to use these responses to improve the quality of future video modules and ultimately create a holistic lesson plan that covers all financial literacy topics the clients desire. A website was also made to store future videos. The team plans to continue with this project post-graduation. Future tasks include creating and testing the a complete lesson plan, establishing a student organization at Arizona State University and recruiting volunteers from different disciplines, and creating an on-site tutoring program so clients may receive individualized attention. Once the lesson plan is demonstrated to be effective at Phoenix Rescue Mission, we plan to administer this lesson plan at other local homeless shelters and assess its efficacy in a non-faithbased and non-male environment. After a successful financial literacy program has been created, we aim to create lesson plans for other topics, including health literacy, human rights, and basic education. Ultimately stillHUMAN will become a sustainable program that unites the efforts of students and professionals to improve the quality of life of the homeless population.
ContributorsKim, Michael (Co-author) / Gulati, Guneet (Co-author) / Vanood, Aimen (Co-author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Department of Physics (Contributor) / Department of Psychology (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135480-Thumbnail Image.png
Description
Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been

Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been shown to retain a high level of fidelity even with an acceleration factor of 5. Currently there exist several different scanner types that each have their separate analytical methods in MATLAB. A graphical user interface (GUI) was created to facilitate a single computing platform for these different scanner types in order to improve the ease and efficiency with which researchers and clinicians interact with this technique. A GUI was successfully created for both prospective and retrospective MRSI data analysis. This GUI retained the original high fidelity of the reconstruction technique and gave the user the ability to load data, load reference images, display intensity maps, display spectra mosaics, generate a mask, display the mask, display kspace and save the corresponding spectra, reconstruction, and mask files. Parallelization of the reconstruction algorithm was explored but implementation was ultimately unsuccessful. Future work could consist of integrating this parallelization method, adding intensity overlay functionality and improving aesthetics.
ContributorsLammers, Luke Michael (Author) / Kodibagkar, Vikram (Thesis director) / Hu, Harry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132664-Thumbnail Image.png
Description
Human potential is characterized by our ability to think flexibly and develop novel solutions to problems. In cognitive neuroscience, problem solving is studied using various tasks. For example, IQ can be tested using the RAVEN, which measures abstract reasoning. Analytical problem solving can be tested using algebra, and insight can

Human potential is characterized by our ability to think flexibly and develop novel solutions to problems. In cognitive neuroscience, problem solving is studied using various tasks. For example, IQ can be tested using the RAVEN, which measures abstract reasoning. Analytical problem solving can be tested using algebra, and insight can be tested using a nine-dot test. Our class of problem-solving tasks blends analytical and insight processes. This can be done by measuring multiply-constrained problem solving (MCPS). MCPS occurs when an individual problem has several solutions, but when grouped with simultaneous problems only one correct solution presents itself. The most common test for MCPS is known at the CRAT, or compound remote associate task. For example, when given the three target words “water, skate, and cream” there are many compound associates that can be assigned each of the target words individually (i.e. salt-water, roller-skate, whipped-cream), but only one that works with all three (ice-water, ice-skate, ice-cream).
This thesis is a tutorial for a MATLAB user-interface, known as EEGLAB. Cognitive and neural correlates of analytical and insight processes were evaluated and analyzed in the CRAT using EEG. It was hypothesized that different EEG signals will be measured for analytical versus insight problem solving, primarily observed in the gamma wave production. The data was interpreted using EEGLAB, which allows psychological processes to be quantified based on physiological response. I have written a tutorial showing how to process the EEG signal through filtering, extracting epochs, artifact detection, independent component analysis, and the production of a time – frequency plot. This project has combined my interest in psychology with my knowledge of engineering and expand my knowledge of bioinstrumentation.
ContributorsCobban, Morgan Elizabeth (Author) / Brewer, Gene (Thesis director) / Ellis, Derek (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05