Matching Items (11)
Filtering by

Clear all filters

133566-Thumbnail Image.png
Description
Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the research will be able to work on ensuring the accuracy of ground tests. This contribution allows for future research on improving active pixel sensor performance.
ContributorsDotson, Breydan Lane (Author) / White, Daniel (Thesis director) / Jansen, Rolf (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
161280-Thumbnail Image.png
Description
This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected at the source in order to realize system benefits, including

This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected at the source in order to realize system benefits, including water conservation, nutrient recovery, and pharmaceutical removal. Urine diversion systems depend greatly on the functionality of nonwater urinals and urine diverting toilets, which are needed to collect undiluted urine. However, the urea hydrolysis reaction creates conditions that lead to precipitation in the fixtures due to the increase in pH from 6 to 9 as ammonia and bicarbonate are produced. Chapter 2 and Chapter 3 describes the creation and use of a cyber-physical system (CPS) to monitor and control urea hydrolysis in the urinal testbed. Two control logics were used to control urea hydrolysis in realistic restroom conditions. In the experiments, acid was added to inhibit urea hydrolysis during periods of high and low building occupancy. These results were able to show that acid should be added based on the restroom use in order to efficiently inhibit urea hydrolysis. Chapter 4 advanced the results from Chapter 3 by testing the acid addition control logics in a real restroom with the urinal-on-wheels. The results showed that adding acid during periods of high building occupancy equated to the least amount of acid added and allowed for urea hydrolysis inhibition. This study also analyzed the bacterial communities of the collected urine and found that acid addition changed the structure of the bacterial communities. Chapter 5 showed an example of the capabilities of a CPS when implemented in CI buildings. The study used data mining methods to predict chlorine residuals in premise plumbing in a CI green building. The results showed that advance modeling methods were able to model the system better than traditional methods. These results show that CPS technology can be used to illuminate systems and can provide information needed to understand conditions within CI buildings.
ContributorsSaetta, Daniella (Author) / Boyer, Treavor H (Thesis advisor) / Hamilton, Kerry (Committee member) / Ross, Heather M. (Committee member) / Boscovic, Dragan (Committee member) / Arizona State University (Publisher)
Created2021
166065-Thumbnail Image.png
Description

The effects of temperatures found commonly along the supply chain were explored when interacting with dendritic identifiers of various common materials. Regression analyses showed that there was no statistical significance in relating SIFT correspondence values to the surface temperature of the dendrites. Physical inspection helped evaluate the integrity of specific

The effects of temperatures found commonly along the supply chain were explored when interacting with dendritic identifiers of various common materials. Regression analyses showed that there was no statistical significance in relating SIFT correspondence values to the surface temperature of the dendrites. Physical inspection helped evaluate the integrity of specific material and substrate combinations along with possibilities for improvement in key point designation within SIFT and ORB image recognition software.

ContributorsMolzen, Noah (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Trujillo, Rhett (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description
The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.
ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2022-05
165883-Thumbnail Image.png
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165884-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165885-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165886-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165887-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05