Matching Items (13)
Filtering by

Clear all filters

147999-Thumbnail Image.png
Description

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the anticipation of such events. Communication between patient and provider was assessed as a potential barrier with respect to perceived provider LGBTQIA+ competency. This study applies the minority stress model, considering experiences of everyday stigma and minority stress as a predictor of healthcare utilization among sexual and gender minority students. The findings suggest a small but substantial correlation between minority stress and healthcare use with 23.7% of respondents delaying or not receiving one or more types of care due to fear of stigma or discrimination. Additionally, communication findings indicate a lack of standardization of LGBTQIA+ competent care with experiences varying greatly between respondents.

ContributorsZahn, Jennica (Author) / Davis, Olga (Thesis director) / LeMaster, Benny (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
The purpose of this project was to create an algorithm to improve firearm aiming. In order to do so, a simulation of exterior ballistics – the bullet’s behavior between the firearm muzzle and the target – was created in MATLAB. The simulation of bullet trajectory included consideration of three forces:

The purpose of this project was to create an algorithm to improve firearm aiming. In order to do so, a simulation of exterior ballistics – the bullet’s behavior between the firearm muzzle and the target – was created in MATLAB. The simulation of bullet trajectory included consideration of three forces: gravity, air drag, and Coriolis ‘force’. An overall equation of motion for the bullet in flight, comprising the effects of the aforementioned forces, was constructed using formulae and theory given in R. L. McCoy’s Modern Exterior Ballistics. For the project, a reference frame was defined based on firearm muzzle and target positions, and an aim vector described by two angles was defined to describe the direction of the firearm’s barrel. The simulations of bullet trajectory take into account eleven parameters: the two aim angles, initial bullet speed (commonly referred to as muzzle velocity), 3-D Cartesian components of wind velocity, air density, bullet diameter, bullet mass, latitude of the firing area, and azimuth of fire (a quantified compass direction of fire).

The user inputs target position, muzzle position, and estimated environmental parameters to the system. Then, an aim vector would be calculated to hit the target under estimated conditions. Because the eleven trajectory parameters likely cannot all be precisely known, this solution will have some error. In real life, the system would use feedback from real shots of a firearm to correct for this error. For this project, a real-world proxy simulation was created that had built-in random error and variations in the parameters. The correction algorithm uses the error data from all previous shots to calculate adjustments to the original aim vector, so that each successive shot becomes more accurate. The system was tested with specifications of a common rifle platform, with estimated parameters and variations for a location in Tempe, AZ (since data for an urban area is readily available compared to a point in the wilderness). Results from this testing revealed that the system can “hit” a 2-meter-radius circular target in under 30 shots. When the errors and variations in parameters were halved for the real-world stand-in simulation, the system could “hit” a circular target with 0.55 meter radius in less than 25 shots. After analysis, it was found that the corrected aim angles converged on values, suggesting that the correction algorithm functions as intended (taking into account all past shots). Generally, it was found that any reduction of the means and standard deviations of parameter error improved the ability of the system to hit smaller targets, or hit the same target with less shots.
ContributorsReyes, Joshua De Leon (Author) / Grewal, Anoop Singh (Thesis director) / Murthy, Raghavendra N. (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132102-Thumbnail Image.png
Description
This paper describes the development of a software tool used to automate the preliminary design of aircraft wing structure. By taking wing planform and aircraft weight as inputs, the tool is able to predict loads that will be experienced by the wing. An iterative process is then used to select

This paper describes the development of a software tool used to automate the preliminary design of aircraft wing structure. By taking wing planform and aircraft weight as inputs, the tool is able to predict loads that will be experienced by the wing. An iterative process is then used to select optimal material thicknesses for each section of the design to minimize total structural weight. The load analysis checks for tensile failure as well as Euler buckling when considering if a given wing structure is valid. After running a variety of test cases with the tool it was found that wing structure of small-scale aircraft is predominantly buckling driven. This is problematic because commonly used weight estimation equations are based on large scale aircraft with strength driven wing designs. Thus, if these equations are applied to smaller aircraft, resulting weight estimates are often much lower than reality. The use of a physics-based approach to preliminary sizing could greatly improve the accuracy of weight predictions and accelerate the design process.
ContributorsKolesov, Nikolay (Author) / Takahashi, Timothy (Thesis director) / Patel, Jay (Committee member) / Kosaraju, Srinivas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132535-Thumbnail Image.png
Description
This honors thesis explores and models the flow of air around a cylindrical arrow that is rotating as it moves through the air. This model represents the airflow around an archery arrow after it is released from the bow and rotates while it flies through the air. This situation is

This honors thesis explores and models the flow of air around a cylindrical arrow that is rotating as it moves through the air. This model represents the airflow around an archery arrow after it is released from the bow and rotates while it flies through the air. This situation is important in archery because an understanding of the airflow allows archers to predict the flight of the arrow. As a result, archers can improve their accuracy and ability to hit targets. However, not many computational fluid dynamic simulations modeling the airflow around a rotating archery arrow exist. This thesis attempts to further the understanding of the airflow around a rotating archery arrow by creating a mathematical model to numerically simulate the airflow around the arrow in the presence of this rotation. This thesis uses a linearized approximation of the Navier Stokes equations to model the airflow around the arrow and explains the reasoning for using this simplification of the fully nonlinear Navier Stokes equations. This thesis continues to describe the discretization of these linearized equations using the finite difference method and the boundary conditions used for these equations. A MATLAB code solves the resulting system of equations in order to obtain a numerical simulation of this airflow around the rotating arrow. The results of the simulation for each velocity component and the pressure distribution are displayed. This thesis then discusses the results of the simulation, and the MATLAB code is analyzed to verify the convergence of the solution. Appendix A includes the full MATLAB code used for the flow simulation. Finally, this thesis explains potential future research topics, ideas, and improvements to the code that can help further the understanding and create more realistic simulations of the airflow around a flying archery arrow.
ContributorsCholinski, Christopher John (Author) / Tang, Wenbo (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134487-Thumbnail Image.png
Description
Monatomic gases are ideal working mediums for Brayton cycle systems due to their favorable thermodynamic properties. Closed Brayton cycle systems make use of these monatomic gases to increase system performance and thermal efficiency. Open Brayton cycles, on the other hand, operate with primarily diatomic and polyatomic gases from air and

Monatomic gases are ideal working mediums for Brayton cycle systems due to their favorable thermodynamic properties. Closed Brayton cycle systems make use of these monatomic gases to increase system performance and thermal efficiency. Open Brayton cycles, on the other hand, operate with primarily diatomic and polyatomic gases from air and combustion products, which have less favorable properties. The focus of this study is to determine if monatomic gases can be utilized in an open Brayton cycle system, in a way that increases the overall performance, but is still cost effective.
Two variations on open cycle Brayton systems were analyzed, consisting of an “airborne” thrust producing propulsion system, and a “ground-based” power generation system. Both of these systems have some mole fraction of He, Ne, or Ar injected into the flow path at the inlet, and some fraction of monatomic gas recuperated and at the nozzle exit to be re-circulated through the system. This creates a working medium of an air-monatomic gas mixture before the combustor, and a combustion products-monatomic gas mixture after combustor. The system’s specific compressor work, specific turbine work, specific net power output, and thermal efficiency were analyzed for each case. The most dominant metric for performance is the thermal efficiency (η_sys), which showed a significant increase as the mole fraction of monatomic gas increased for all three gas types. With a mole fraction of 0.15, there was a 2-2.5% increase in the airborne system, and a 1.75% increase of the ground-based system. This confirms that “spiking” any open Brayton system with monatomic gas will lead to an increase in performance. Additionally, both systems showed an increase in compressor and turbine work for a set temperature difference with He and Ne, which can additionally lead to longer component lifecycles with less frequent maintenance checks.
The cost analysis essentially compares the operating cost of a standard system with the operating cost of the monatomic gas “spiked” system, while keeping the internal mass flow rate and total power output the same. This savings is denoted as a percent of the standard system with %NCS. This metric lumps the cost ratio of the monatomic gas and fuel (MGC/FC) with the fraction of recuperated monatomic gas (RF) into an effective cost ratio that represents the cost per second of monatomic gas injected into the system. Without recuperation, the results showed there is no mole fraction of any monatomic gas type that yields a positive %NCS for a reasonable range of current MGC/FC values. Integrating recuperation machinery in an airborne system is hugely impractical, effectively meaning that the use of monatomic gas in this case is not feasible. For a ground-based system on the other hand, recuperation is much more practical. The ground-based system showed that a RF value of at least 50% for He, 89% for Ne, and 94% for Ar is needed for positive savings. This shows that monatomic gas could theoretically be used cost effectively in a ground-based, power-generating open Brayton system. With an injected monatomic gas mole fraction of 0.15, and full 100% recuperation, there is a net cost savings of about 3.75% in this ground-based system.
ContributorsBernaud, Ryan Clark (Author) / Dahm, Werner (Thesis director) / Wells, Valana (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135031-Thumbnail Image.png
Description
The Walter Cronkite School of Journalism and Mass Communications stands as a "gold standard" of journalism education throughout the country. In my time at the school though, I found that some aspects in the whole of the curriculum were missing. I as well as several other friends became interested in

The Walter Cronkite School of Journalism and Mass Communications stands as a "gold standard" of journalism education throughout the country. In my time at the school though, I found that some aspects in the whole of the curriculum were missing. I as well as several other friends became interested in production and the technical side of things. This seemed to be the direction we wanted to go and soon realized this played a crucial part in journalism. Although there is a studio production class and a studio production track through the immersive Cronkite News program, there is not much in between. This inspired me to take a look deeper into production skills and their place within a journalism education. The project is split into three main sections that dive into the ideas of teaching production skills and technical skills to journalism students and whether or not it is valuable. The first part is the background of the project and why this project came to be. The background section explores the inspiration for the project. The project continues with a look at job statistics and where the industry currently sits. This continues into the final section that contains personal stories and interviews with professionals in the field. This is a critical section to back up claims made through research and evaluation. There is a lot of personal experience and non-traditional research done through this project, but the assertions and conclusions made are clear. Through job statistics, personal stories, and interviews with professionals, this project examines how production could be taught in a traditional journalism program. These stories show that a journalism curriculum may not be the best place to teach production in depth, but that it still is an incredibly important part of the journalism world as a whole.
Created2016-12
Description
Horizon is a young adult dystopian fiction piece that addresses issues of gender and LGBTQIA+ identity. In the story, the world has been divided into two separate societies: earth, inhabited by females, and a platform in the sky, inhabited by males. This physical division is the result of a war

Horizon is a young adult dystopian fiction piece that addresses issues of gender and LGBTQIA+ identity. In the story, the world has been divided into two separate societies: earth, inhabited by females, and a platform in the sky, inhabited by males. This physical division is the result of a war between the two groups. Ever since this war, there has been limited communication between the two societies, and the members of each society have animosity for those who are of a different sex or gender. The plot follows two main characters, Andrea and Susumu, as they come to understand the corruption of their societies and attempt to cross the gender divide. They are joined on their journey by other characters of varied gender and LGBTQIA+ identities, each of them unable to fit into their society's parameters of appropriate gendered behavior. This creative project looks critically at the ways in which members of different genders can become alienated from each other through societal pressure. It also analyzes how LGBTQIA+ identity may factor into the gendering of an individual, explores how people can be ostracized because of their identity, and critiques the gender binary. The second component of this creative project is a detailed reflection on the creative writing process. It outlines the steps of creating Horizon, from brainstorming through writing and editing. An explanation of the purpose the project and a discussion of writing challenges and future goals is included. The reflection also puts Horizon in context with other LGBTQIA+ media and dystopian novels and explains some of the most crucial decisions that were made in the creation of this story.
ContributorsPerry, Samantha Lynn (Author) / Himberg, Julia (Thesis director) / Dove-Viebahn, Aviva (Committee member) / Hugh Downs School of Human Communication (Contributor) / College of Public Service and Community Solutions (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
166065-Thumbnail Image.png
Description

The effects of temperatures found commonly along the supply chain were explored when interacting with dendritic identifiers of various common materials. Regression analyses showed that there was no statistical significance in relating SIFT correspondence values to the surface temperature of the dendrites. Physical inspection helped evaluate the integrity of specific

The effects of temperatures found commonly along the supply chain were explored when interacting with dendritic identifiers of various common materials. Regression analyses showed that there was no statistical significance in relating SIFT correspondence values to the surface temperature of the dendrites. Physical inspection helped evaluate the integrity of specific material and substrate combinations along with possibilities for improvement in key point designation within SIFT and ORB image recognition software.

ContributorsMolzen, Noah (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Trujillo, Rhett (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description
The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.
ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2022-05
166149-Thumbnail Image.png
Description

The objective goal of this research is to maximize the speed of the end effector of a three link R-R-R mechanical system with constrained torque input control. The project utilizes MATLAB optimization tools to determine the optimal throwing motion of a simulated mechanical system, while mirroring the physical parameters and

The objective goal of this research is to maximize the speed of the end effector of a three link R-R-R mechanical system with constrained torque input control. The project utilizes MATLAB optimization tools to determine the optimal throwing motion of a simulated mechanical system, while mirroring the physical parameters and constraints of a human arm wherever possible. The analysis of this final result determines if the kinetic chain effect is present in the theoretically optimized solution. This is done by comparing it with an intuitively optimized system based on throwing motion derived from the forehand throw in Ultimate frisbee.

ContributorsHartmann, Julien (Author) / Grewal, Anoop (Thesis director) / Redkar, Sangram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05