Matching Items (2)
Filtering by

Clear all filters

158095-Thumbnail Image.png
Description
A model of self-heating is incorporated into a Cellular Monte Carlo (CMC) particle-based device simulator through the solution of an energy balance equation (EBE) for phonons. The EBE self-consistently couples charge and heat transport in the simulation through a novel approach to computing the heat generation rate in

A model of self-heating is incorporated into a Cellular Monte Carlo (CMC) particle-based device simulator through the solution of an energy balance equation (EBE) for phonons. The EBE self-consistently couples charge and heat transport in the simulation through a novel approach to computing the heat generation rate in the device under study. First, the moments of the Boltzmann Transport equation (BTE) are discussed, and subsequently the EBE of for phonons is derived. Subsequently, several tests are performed to verify the applicability and accuracy of a nonlinear iterative method for the solution of the EBE in the presence of convective boundary conditions, as compared to a finite element analysis solver as well as using the Kirchhoff transformation. The coupled electrothermal characterization of a GaN/AlGaN high electron mobility transistor (HEMT) is then performed, and the effects of non-ideal interfaces and boundary conditions are studied.



The proposed thermal model is then applied to a novel $\Pi$-gate architecture which has been suggested to reduce hot electron generation in the device, compared to the conventional T-gate. Additionally, small signal ac simulations are performed for the determination of cutoff frequencies using the thermal model as well.

Finally, further extensions of the CMC algorithm used in this work are discussed, including 1) higher-order moments of the phonon BTE, 2) coupling to phonon Monte Carlo simulations, and 3) application to other large-bandgap, and therefore high-power, materials such as diamond.
ContributorsMerrill, Ky (Author) / Saraniti, Marco (Thesis advisor) / Goodnick, Stephen (Committee member) / Smith, David (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2020
154021-Thumbnail Image.png
Description
The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of

The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of host material generates two additional carrier transitions for sub-bandgap photon absorption, leading to increased photocurrent of IBSCs while simultaneously allowing an open-circuit voltage of the highest band gap. To realize a high efficiency IBSC, QD structures should have high crystal quality and optimized electronic properties. This dissertation focuses on the investigation and optimization of the structural and optical properties of InAs/GaAsSb QDs and the development of InAs/GaAsSb QD-based IBSCs.

In the present dissertation, the interband optical transition and carrier lifetime of InAs/GaAsSb QDs with different silicon delta-doping densities have been first studied by time-integrated and time-resolved photoluminescence (PL). It is found that an optimized silicon delta-doping density in the QDs enables to fill the QD electronic states with electrons for sub-bandgap photon absorption and to improve carrier lifetime of the QDs.

After that, the crystal quality and QD morphology of single- and multi-stack InAs/GaAsSb QDs with different Sb compositions have been investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The TEM studies reveal that QD morphology of single-stack QDs is affected by Sb composition due to strain reducing effect of Sb incorporation. The XRD studies confirm that the increase of Sb composition increases the lattice mismatch between GaAs matrix and GaAsSb spacers, resulting in increase of the strain relaxation in GaAsSb of the multi-stack QDs. Furthermore, the increase of Sb composition causes a PL redshift and increases carrier lifetime of QDs.

Finally, the spacer layer thickness of multi-stack InAs/GaAsSb QDs is optimized for the growth of InAs/GaAsSb QD solar cells (QDSCs). The InAs/GaAsSb QDSCs with GaP strain compensating layer are grown and their device performances are characterized. The increase of GaP coverage is beneficial to improve the conversion efficiency of the QDSCs. However, the conversion efficiency is reduced when using a relatively large GaP coverage.
ContributorsKim, Yeongho (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015