Matching Items (10)
Filtering by

Clear all filters

151779-Thumbnail Image.png
Description
Photovoltaic (PV) module nameplates typically provide the module's electrical characteristics at standard test conditions (STC). The STC conditions are: irradiance of 1000 W/m2, cell temperature of 25oC and sunlight spectrum at air mass 1.5. However, modules in the field experience a wide range of environmental conditions which affect their electrical

Photovoltaic (PV) module nameplates typically provide the module's electrical characteristics at standard test conditions (STC). The STC conditions are: irradiance of 1000 W/m2, cell temperature of 25oC and sunlight spectrum at air mass 1.5. However, modules in the field experience a wide range of environmental conditions which affect their electrical characteristics and render the nameplate data insufficient in determining a module's overall, actual field performance. To make sound technical and financial decisions, designers and investors need additional performance data to determine the energy produced by modules operating under various field conditions. The angle of incidence (AOI) of sunlight on PV modules is one of the major parameters which dictate the amount of light reaching the solar cells. The experiment was carried out at the Arizona State University- Photovoltaic Reliability Laboratory (ASU-PRL). The data obtained was processed in accordance with the IEC 61853-2 model to obtain relative optical response of the modules (response which does not include the cosine effect). The results were then compared with theoretical models for air-glass interface and also with the empirical model developed by Sandia National Laboratories. The results showed that all modules with glass as the superstrate had identical optical response and were in agreement with both the IEC 61853-2 model and other theoretical and empirical models. The performance degradation of module over years of exposure in the field is dependent upon factors such as environmental conditions, system configuration, etc. Analyzing the degradation of power and other related performance parameters over time will provide vital information regarding possible degradation rates and mechanisms of the modules. An extensive study was conducted by previous ASU-PRL students on approximately 1700 modules which have over 13 years of hot- dry climatic field condition. An analysis of the results obtained in previous ASU-PRL studies show that the major degradation in crystalline silicon modules having glass/polymer construction is encapsulant discoloration (causing short circuit current drop) and solder bond degradation (causing fill factor drop due to series resistance increase). The power degradation for crystalline silicon modules having glass/glass construction was primarily attributed to encapsulant delamination (causing open-circuit voltage drop).
ContributorsVasantha Janakeeraman, Suryanarayana (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2013
153107-Thumbnail Image.png
Description
To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of

To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of the PV module. This thesis presents two studies that focus on investigating the soiling effect on the performance of the PV modules installed in Metro Phoenix area.

The first study was conducted to investigate the optimum cleaning frequency for cleaning PV modules installed in Mesa, AZ. By monitoring the soiling loss of PV modules mounted on a mock rooftop at ASU-PRL, a detailed soiling modeling was obtained. Same setup was also used for other soiling-related investigations like studying the effect of soiling density on angle of incidence (AOI) dependence, the climatological relevance (CR) to soiling, and spatial variation of the soiling loss. During the first dry season (May to June), the daily soiling rate was found as -0.061% for 20o tilted modules. Based on the obtained soiling rate, cleaning PV modules, when the soiling is just due to dust on 20o tilted residential arrays, was found economically not justifiable.

The second study focuses on evaluating the soiling loss in different locations of Metro Phoenix area of Arizona. The main goal behind the second study was to validate the daily soiling rate obtained from the mock rooftop setup in the first part of this thesis. By collaborating with local solar panel cleaning companies, soiling data for six residential systems in 5 different cities in and around Phoenix was collected, processed, and analyzed. The range of daily soiling rate in the Phoenix area was found as -0.057% to -0.085% for 13-28o tilted arrays. The soiling rate found in the first part of the thesis (-0.061%) for 20o tilted array, was validated since it falls within the range obtained from the second part of the thesis.
ContributorsNaeem, Mohammad Hussain (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2014
156349-Thumbnail Image.png
Description
In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down

In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down on cost to produce the sensors as well as enabling the manufacture of custom sensors in different sizes and different configurations. Currently commercially available sensors are expensive and are usually designed for very specific applications. By creating these same types of sensors using new methods and materials, these new sensors will show that flexible sensor creation for many uses at a fraction of the cost is achievable.
ContributorsCasanova, Lucas Montgomery (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
149645-Thumbnail Image.png
Description
Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen

Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 oC and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm-2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 oC) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant less degradation after 1000 cycles for ALS based Pt/MWCNTs.
ContributorsLiu, Xuan (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Munukutla, Lakshmi (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2011
149396-Thumbnail Image.png
Description
Photovoltaic (PV) modules appear to have three classifications of failure: Infant mortality, normal-life failure, and end-of-life failure. Little is known of the end-of-life failures experienced by PV modules due to their inherent longevity. Accelerated Life Testing (ALT) has been at the crux of this lifespan prediction; however, without naturally failing

Photovoltaic (PV) modules appear to have three classifications of failure: Infant mortality, normal-life failure, and end-of-life failure. Little is known of the end-of-life failures experienced by PV modules due to their inherent longevity. Accelerated Life Testing (ALT) has been at the crux of this lifespan prediction; however, without naturally failing modules an accurate acceleration factor cannot be determined for use in ALT. By observing modules that have been aged in the field, a comparison can be made with modules undergoing accelerated testing. In this study an investigation on about 1900 aged (10-17 years) grid-tied PV modules installed in the desert climatic condition of Arizona was undertaken. The investigation was comprised of a check sheet that documented any visual defects and their severity, infrared (IR) scanning, and current-voltage (I-V) curve measurements. After data was collected on modules, an analysis was performed to classify the failure modes and to determine the annual performance degradation rates.
ContributorsSuleske, Adam Alfred (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2010
158636-Thumbnail Image.png
Description
According to the Center for Disease Control and Prevention report around 29,668 United States residents aged greater than 65 years had died as a result of a fall in 2016. Other injuries like wrist fractures, hip fractures, and head injuries occur as a result of a fall. Certain groups of

According to the Center for Disease Control and Prevention report around 29,668 United States residents aged greater than 65 years had died as a result of a fall in 2016. Other injuries like wrist fractures, hip fractures, and head injuries occur as a result of a fall. Certain groups of people are more prone to experience falls than others, one of which being individuals with stroke. The two most common issues with individuals with strokes are ankle weakness and foot drop, both of which contribute to falls. To mitigate this issue, the most popular clinical remedy given to these users is thermoplastic Ankle Foot Orthosis. These AFO's help improving gait velocity, stride length, and cadence. However, studies have shown that a continuous restraint on the ankle harms the compensatory stepping response and forward propulsion. It has been shown in previous studies that compensatory stepping and forward propulsion are crucial for the user's ability to recover from postural perturbations. Hence, there is a need for active devices that can supply a plantarflexion during the push-off and dorsiflexion during the swing phase of gait. Although advancements in the orthotic research have shown major improvements in supporting the ankle joint for rehabilitation, there is a lack of available active devices that can help impaired users in daily activities. In this study, our primary focus is to build an unobtrusive, cost-effective, and easy to wear active device for gait rehabilitation and fall prevention in individuals who are at risk. The device will be using a double-acting cylinder that can be easily incorporated into the user's footwear using a novel custom-designed powered ankle brace. The device will use Inertial Measurement Units to measure kinematic parameters of the lower body and a custom control algorithm to actuate the device based on the measurements. The study can be used to advance the field of gait assistance, rehabilitation, and potentially fall prevention of individuals with lower-limb impairments through the use of Active Ankle Foot Orthosis.
ContributorsRay, Sambarta (Author) / Honeycutt, Claire (Thesis advisor) / Dasarathy, Gautam (Thesis advisor) / Redkar, Sangram (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2020
157910-Thumbnail Image.png
Description
The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease

The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease due to potential induced degradation, etc. Several PV modules together in series makes up a string, and in a power plant there are a number of these strings in parallel which can be referred to as an array. Ideally, PV modules in a string should be identically matched to attain maximum power output from the entire string. Any underperforming module or mismatch among modules within a string can reduce the power output. The goal of this project is to quickly identify and quantitatively determine the underperforming module(s) in an operating string without the use of an I-V curve tracer, irradiance sensor or temperature sensor. This goal was achieved by utilizing Radiovoltmeters (RVM). In this project, it is demonstrated that the voltages at maximum power point (Vmax) of all the individual modules in a string can be simultaneously and quantitatively obtained using RVMs at a single irradiance, single module operating temperature, single spectrum and single angle of incidence. By combining these individual module voltages (Vmax) with the string current (Imax) using a Hall sensor, the power output of individual modules can be obtained, quickly and quantitatively.
ContributorsTahghighi, Arash (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2019
158779-Thumbnail Image.png
Description
The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB)

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following accelerated tests as specified in the International Electrotechnical Commission (IEC) standard and Qualification Plus protocol of NREL: Ultraviolet (UV) 250 kWh/m2; Thermal Cycling (TC) 200 cycles; Damp Heat (DH) 1250 hours. To identify the failure modes and reliability issues of the stressed modules, several module-level non-destructive characterizations were carried out and they include colorimetry, UV-Vis-NIR spectral reflectance, ultraviolet fluorescence (UVF) imaging, electroluminescence (EL) imaging, and infrared (IR) imaging. The above-mentioned characterizations were performed on the front side of the modules both before the stress tests (i.e. pre-stress) and after the stress tests (i.e. post-stress). The UV-250 extended stress results indicated slight changes in the reflectance on the non-cell area of EVA modules probably due to minor adhesion loss at the cell and module edges. From the DH-1250 extended stress tests, significant changes, in both encapsulant types modules, were observed in reflectance and UVF images indicating early stages of delamination. In the case of the TC-200 stress test, practically no changes were observed in all sets of modules. From the above short-term stress tests, it appears although not conclusive at this stage of the analysis, delamination seems to be the only failure mode that could possibly be affecting the module performance, as observed from UV and DH extended stress tests. All these stress tests need to be continued to identify the wear-out failure modes and their impacts on the performance parameters of PV modules.
ContributorsBhaskaran, Rahul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
158450-Thumbnail Image.png
Description
In the current photovoltaic (PV) industry, the O&M (operations and maintenance) personnel in the field primarily utilize three approaches to identify the underperforming or defective modules in a string: i) EL (electroluminescence) imaging of all the modules in the string; ii) IR (infrared) thermal imaging of all the modules in

In the current photovoltaic (PV) industry, the O&M (operations and maintenance) personnel in the field primarily utilize three approaches to identify the underperforming or defective modules in a string: i) EL (electroluminescence) imaging of all the modules in the string; ii) IR (infrared) thermal imaging of all the modules in the string; and, iii) current-voltage (I-V) curve tracing of all the modules in the string. In the first and second approaches, the EL images are used to detect the modules with broken cells, and the IR images are used to detect the modules with hotspot cells, respectively. These two methods may identify the modules with defective cells only semi-qualitatively, but not accurately and quantitatively. The third method, I-V curve tracing, is a quantitative method to identify the underperforming modules in a string, but it is an extremely time consuming, labor-intensive, and highly ambient conditions dependent method. Since the I-V curves of individual modules in a string are obtained by disconnecting them individually at different irradiance levels, module operating temperatures, angle of incidences (AOI) and air-masses/spectra, all these measured curves are required to be translated to a single reporting condition (SRC) of a single irradiance, single temperature, single AOI and single spectrum. These translations are not only time consuming but are also prone to inaccuracy due to inherent issues in the translation models. Therefore, the current challenges in using the traditional I-V tracers are related to: i) obtaining I-V curves simultaneously of all the modules and substrings in a string at a single irradiance, operating temperature, irradiance spectrum and angle of incidence due to changing weather parameters and sun positions during the measurements, ii) safety of field personnel when disconnecting and reconnecting of cables in high voltage systems (especially field aged connectors), and iii) enormous time and hardship for the test personnel in harsh outdoor climatic conditions. In this thesis work, a non-contact I-V (NCIV) curve tracing tool has been integrated and implemented to address the above mentioned three challenges of the traditional I-V tracers.

This work compares I-V curves obtained using a traditional I-V curve tracer with the I-V curves obtained using a NCIV curve tracer for the string, substring and individual modules of crystalline silicon (c-Si) and cadmium telluride (CdTe) technologies. The NCIV curve tracer equipment used in this study was integrated using three commercially available components: non-contact voltmeters (NCV) with voltage probes to measure the voltages of substrings/modules in a string, a hall sensor to measure the string current and a DAS (data acquisition system) for simultaneous collection of the voltage data obtained from the NCVs and the current data obtained from the hall sensor. This study demonstrates the concept and accuracy of the NCIV curve tracer by comparing the I-V curves obtained using a traditional capacitor-based tracer and the NCIV curve tracer in a three-module string of c-Si modules and of CdTe modules under natural sunlight with uniform light conditions on all the modules in the string and with partially shading one or more of the modules in the string to simulate and quantitatively detect the underperforming module(s) in a string.
ContributorsMurali, Sanjay (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
161425-Thumbnail Image.png
Description
Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional

Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional communication modes like a phone call or a video call. By studying how humans interpret haptically generated messages, this research aims to create a new communication channel for humans. This novel device will be worn on the user's forearm and has a broad scope of applications such as navigation, social interactions, notifications, health care, and education. The research methods include testing patterns in the vibro-thermal modality while noting its realizability and accuracy. Different patterns can be controlled and generated through an Android application connected to the proposed device via Bluetooth. Experimental results indicate that the patterns SINGLE TAP and HOLD/SQUEEZE were easily identifiable and more relatable to social interactions. In contrast, other patterns like UP-DOWN, DOWN-UP, LEFTRIGHT, LEFT-RIGHT, LEFT-DIAGONAL, and RIGHT-DIAGONAL were less identifiable and less relatable to social interactions. Finally, design modifications are required if complex social patterns are needed to be displayed on the forearm.
ContributorsGharat, Shubham Shriniwas (Author) / McDaniel, Troy (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021