Matching Items (4)
Filtering by

Clear all filters

151945-Thumbnail Image.png
Description
In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a constellation of heterogeneous processing elements (PEs) (general purpose PEs and application-specific integrated circuits (ASICS)). A typical MPSoC will be composed of a application processor, such as an ARM Coretex-A9 with cache coherent memory hierarchy, and several application sub-systems. Each of these sub-systems are composed of highly optimized instruction processors, graphics/DSP processors, and custom hardware accelerators. Typically, these sub-systems utilize scratchpad memories (SPM) rather than support cache coherency. The overall architecture is an integration of the various sub-systems through a high bandwidth system-level interconnect (such as a Network-on-Chip (NoC)). The shift to MPSoCs has been fueled by three major factors: demand for high performance, the use of component libraries, and short design turn around time. As customers continue to desire more and more complex applications on their embedded devices the performance demand for these devices continues to increase. Designers have turned to using MPSoCs to address this demand. By using pre-made IP libraries designers can quickly piece together a MPSoC that will meet the application demands of the end user with minimal time spent designing new hardware. Additionally, the use of MPSoCs allows designers to generate new devices very quickly and thus reducing the time to market. In this work, a complete MPSoC synthesis design flow is presented. We first present a technique \cite{leary1_intro} to address the synthesis of the interconnect architecture (particularly Network-on-Chip (NoC)). We then address the synthesis of the memory architecture of a MPSoC sub-system \cite{leary2_intro}. Lastly, we present a co-synthesis technique to generate the functional and memory architectures simultaneously. The validity and quality of each synthesis technique is demonstrated through extensive experimentation.
ContributorsLeary, Glenn (Author) / Chatha, Karamvir S (Thesis advisor) / Vrudhula, Sarma (Committee member) / Shrivastava, Aviral (Committee member) / Beraha, Rudy (Committee member) / Arizona State University (Publisher)
Created2013
152997-Thumbnail Image.png
Description
Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The

Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The kernels are computationally intensive and are mainly characterized by real-time constraints that demand high throughput and data bandwidth with limited global data reuse. Conventional architectures fail to meet these demands due to their poorly matched execution models and the overheads associated with instruction and data movements.

This work presents StreamWorks, a multi-core embedded architecture for energy-efficient stream computing. The basic processing element in the StreamWorks architecture is the StreamEngine (SE) which is responsible for iteratively executing a stream kernel. SE introduces an instruction locking mechanism that exploits the iterative nature of the kernels and enables fine-grain instruction reuse. Each instruction in a SE is locked to a Reservation Station (RS) and revitalizes itself after execution; thus never retiring from the RS. The entire kernel is hosted in RS Banks (RSBs) close to functional units for energy-efficient instruction delivery. The dataflow semantics of stream kernels are captured by a context-aware dataflow execution mode that efficiently exploits the Instruction Level Parallelism (ILP) and Data-level parallelism (DLP) within stream kernels.

Multiple SEs are grouped together to form a StreamCluster (SC) that communicate via a local interconnect. A novel software FIFO virtualization technique with split-join functionality is proposed for efficient and scalable stream communication across SEs. The proposed communication mechanism exploits the Task-level parallelism (TLP) of the stream application. The performance and scalability of the communication mechanism is evaluated against the existing data movement schemes for scratchpad based multi-core architectures. Further, overlay schemes and architectural support are proposed that allow hosting any number of kernels on the StreamWorks architecture. The proposed oevrlay schemes for code management supports kernel(context) switching for the most common use cases and can be adapted for any multi-core architecture that use software managed local memories.

The performance and energy-efficiency of the StreamWorks architecture is evaluated for stream kernel and application benchmarks by implementing the architecture in 45nm TSMC and comparison with a low power RISC core and a contemporary accelerator.
ContributorsPanda, Amrit (Author) / Chatha, Karam S. (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2014
156190-Thumbnail Image.png
Description
The quality and quantity of talented members of the US STEM workforce has

been a subject of great interest to policy and decision makers for the past 40 years.

Recent research indicates that while there exist specific shortages in specific disciplines

and areas of expertise in the private sector and the federal government,

The quality and quantity of talented members of the US STEM workforce has

been a subject of great interest to policy and decision makers for the past 40 years.

Recent research indicates that while there exist specific shortages in specific disciplines

and areas of expertise in the private sector and the federal government, there is no

noticeable shortage in any STEM academic discipline, but rather a surplus of PhDs

vying for increasingly scarce tenure track positions. Despite the seeming availability

of industry and private sector jobs, recent PhDs still struggle to find employment in

those areas. I argue that the decades old narrative suggesting a shortage of STEM

PhDs in the US poses a threat to the value of the natural science PhD, and that

this narrative contributes significantly to why so many PhDs struggle to find career

employment in their fields. This study aims to address the following question: what is

the value of a STEM PhD outside academia? I begin with a critical review of existing

literature, and then analyze programmatic documents for STEM PhD programs at

ASU, interviews with industry employers, and an examination the public face of value

for these degrees. I then uncover the nature of the value alignment, value disconnect,

and value erosion in the ecosystem which produces and then employs STEM PhDs,

concluding with specific areas which merit special consideration in an effort to increase

the value of these degrees for all stakeholders involved.
ContributorsGarbee, Elizabeth (Author) / Maynard, Andrew D. (Thesis advisor) / Wetmore, Jameson (Committee member) / Anderson, Derrick (Committee member) / Arizona State University (Publisher)
Created2018
155831-Thumbnail Image.png
Description
With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain good performance improvement. This is mainly due to three inefficiencies in modern GPU and system architectures.

First, not all parallel threads

With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain good performance improvement. This is mainly due to three inefficiencies in modern GPU and system architectures.

First, not all parallel threads have a uniform amount of workload to fully utilize GPU’s computation ability, leading to a sub-optimal performance problem, called warp criticality. To mitigate the degree of warp criticality, I propose a Criticality-Aware Warp Acceleration mechanism, called CAWA. CAWA predicts and accelerates the critical warp execution by allocating larger execution time slices and additional cache resources to the critical warp. The evaluation result shows that with CAWA, GPUs can achieve an average of 1.23x speedup.

Second, the shared cache storage in GPUs is often insufficient to accommodate demands of the large number of concurrent threads. As a result, cache thrashing is commonly experienced in GPU’s cache memories, particularly in the L1 data caches. To alleviate the cache contention and thrashing problem, I develop an instruction aware Control Loop Based Adaptive Bypassing algorithm, called Ctrl-C. Ctrl-C learns the cache reuse behavior and bypasses a portion of memory requests with the help of feedback control loops. The evaluation result shows that Ctrl-C can effectively improve cache utilization in GPUs and achieve an average of 1.42x speedup for cache sensitive GPGPU workloads.

Finally, GPU workloads and the co-located processes running on the host chip multiprocessor (CMP) in a heterogeneous system setup can contend for memory resources in multiple levels, resulting in significant performance degradation. To maximize the system throughput and balance the performance degradation of all co-located applications, I design a scalable performance degradation predictor specifically for heterogeneous systems, called HeteroPDP. HeteroPDP predicts the application execution time and schedules OpenCL workloads to run on different devices based on the optimization goal. The evaluation result shows HeteroPDP can improve the system fairness from 24% to 65% when an OpenCL application is co-located with other processes, and gain an additional 50% speedup compared with always offloading the OpenCL workload to GPUs.

In summary, this dissertation aims to provide insights for the future microarchitecture and system architecture designs by identifying, analyzing, and addressing three critical performance problems in modern GPUs.
ContributorsLee, Shin-Ying (Author) / Wu, Carole-Jean (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Ren, Fengbo (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2017