Matching Items (77)
Filtering by

Clear all filters

158728-Thumbnail Image.png
Description
Unmanned aerial systems (UASs) have recently enabled novel applications such as passenger transport and package delivery, but are increasingly vulnerable to cyberattack and therefore difficult to certify. Legacy systems such as GPS provide these capabilities extremely well, but are sensitive to spoofing and hijacking. An alternative intelligent transport system (ITS)

Unmanned aerial systems (UASs) have recently enabled novel applications such as passenger transport and package delivery, but are increasingly vulnerable to cyberattack and therefore difficult to certify. Legacy systems such as GPS provide these capabilities extremely well, but are sensitive to spoofing and hijacking. An alternative intelligent transport system (ITS) was developed that provides highly secure communications, positioning, and timing synchronization services to networks of cooperative RF users, termed Communications and High-Precision Positioning (CHP2) system. This technology was implemented on consumer-off-the-shelf (COTS) hardware and it offers rapid (<100 ms) and precise (<5 cm) positioning capabilities in over-the-air experiments using flexible ground stations and UAS platforms using limited bandwidth (10 MHz). In this study, CHP2 is considered in the context of safety-critical and resource limited transport applications and urban air mobility. The two-way ranging (TWR) protocol over a joint positioning-communications waveform enables distributed coherence and time-of-flight(ToF) estimation. In a multi-antenna setup, the cross-platform ranging on participating nodes in the network translate to precise target location and orientation. In the current form, CHP2 necessitates a cooperative timing exchange at regular intervals. Dynamic resource management supports higher user densities by constantly renegotiating spectral access depending on need and opportunity. With these novel contributions to the field of integrated positioning and communications, CHP2 is a suitable candidate to provide both communications, navigation, and surveillance (CNS) and alternative positioning, navigation, and timing (APNT) services for high density safety-critical transport applications on a variety of vehicular platforms.
ContributorsSrinivas, Sharanya (Author) / Bliss, Daniel W. (Thesis advisor) / Richmond, Christ D. (Committee member) / Chakrabarti, Chaitali (Committee member) / Alkhateeb, Ahmed (Committee member) / Arizona State University (Publisher)
Created2020
157982-Thumbnail Image.png
Description
Ultrasound B-mode imaging is an increasingly significant medical imaging modality for clinical applications. Compared to other imaging modalities like computed tomography (CT) or magnetic resonance imaging (MRI), ultrasound imaging has the advantage of being safe, inexpensive, and portable. While two dimensional (2-D) ultrasound imaging is very popular, three dimensional (3-D)

Ultrasound B-mode imaging is an increasingly significant medical imaging modality for clinical applications. Compared to other imaging modalities like computed tomography (CT) or magnetic resonance imaging (MRI), ultrasound imaging has the advantage of being safe, inexpensive, and portable. While two dimensional (2-D) ultrasound imaging is very popular, three dimensional (3-D) ultrasound imaging provides distinct advantages over its 2-D counterpart by providing volumetric imaging, which leads to more accurate analysis of tumor and cysts. However, the amount of received data at the front-end of 3-D system is extremely large, making it impractical for power-constrained portable systems.



In this thesis, algorithm and hardware design techniques to support a hand-held 3-D ultrasound imaging system are proposed. Synthetic aperture sequential beamforming (SASB) is chosen since its computations can be split into two stages, where the output generated of Stage 1 is significantly smaller in size compared to the input. This characteristic enables Stage 1 to be done in the front end while Stage 2 can be sent out to be processed elsewhere.



The contributions of this thesis are as follows. First, 2-D SASB is extended to 3-D. Techniques to increase the volume rate of 3-D SASB through a new multi-line firing scheme and use of linear chirp as the excitation waveform, are presented. A new sparse array design that not only reduces the number of active transducers but also avoids the imaging degradation caused by grating lobes, is proposed. A combination of these techniques increases the volume rate of 3-D SASB by 4\texttimes{} without introducing extra computations at the front end.



Next, algorithmic techniques to further reduce the Stage 1 computations in the front end are presented. These include reducing the number of distinct apodization coefficients and operating with narrow-bit-width fixed-point data. A 3-D die stacked architecture is designed for the front end. This highly parallel architecture enables the signals received by 961 active transducers to be digitalized, routed by a network-on-chip, and processed in parallel. The processed data are accumulated through a bus-based structure. This architecture is synthesized using TSMC 28 nm technology node and the estimated power consumption of the front end is less than 2 W.



Finally, the Stage 2 computations are mapped onto a reconfigurable multi-core architecture, TRANSFORMER, which supports different types of on-chip memory banks and run-time reconfigurable connections between general processing elements and memory banks. The matched filtering step and the beamforming step in Stage 2 are mapped onto TRANSFORMER with different memory configurations. Gem5 simulations show that the private cache mode generates shorter execution time and higher computation efficiency compared to other cache modes. The overall execution time for Stage 2 is 14.73 ms. The average power consumption and the average Giga-operations-per-second/Watt in 14 nm technology node are 0.14 W and 103.84, respectively.
ContributorsZhou, Jian (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Wenisch, Thomas F. (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2019
158584-Thumbnail Image.png
Description
The following document describes the hardware implementation and analysis of Temporal Interference Mitigation using High-Level Synthesis. As the problem of spectral congestion becomes more chronic and widespread, Electromagnetic radio frequency (RF) based systems are posing as viable solution to this problem. Among the existing RF methods Cooperation based systems have

The following document describes the hardware implementation and analysis of Temporal Interference Mitigation using High-Level Synthesis. As the problem of spectral congestion becomes more chronic and widespread, Electromagnetic radio frequency (RF) based systems are posing as viable solution to this problem. Among the existing RF methods Cooperation based systems have been a solution to a host of congestion problems. One of the most important elements of RF receiver is the spatially adaptive part of the receiver. Temporal Mitigation is vital technique employed at the receiver for signal recovery and future propagation along the radar chain.

The computationally intensive parts of temporal mitigation are identified and hardware accelerated. The hardware implementation is based on sequential approach with optimizations applied on the individual components for better performance.

An extensive analysis using a range of fixed point data types is performed to find the optimal data type necessary.

Finally a hybrid combination of data types for different components of temporal mitigation is proposed based on results from the above analysis.
ContributorsSiddiqui, Saquib Ahmad (Author) / Bliss, Daniel (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Ogras, Umit Y. (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2020
Description
Movement disorders are becoming one of the leading causes of functional disability due to aging populations and extended life expectancy. Diagnosis, treatment, and rehabilitation currently depend on the behavior observed in a clinical environment. After the patient leaves the clinic, there is no standard approach to continuously monitor the patient

Movement disorders are becoming one of the leading causes of functional disability due to aging populations and extended life expectancy. Diagnosis, treatment, and rehabilitation currently depend on the behavior observed in a clinical environment. After the patient leaves the clinic, there is no standard approach to continuously monitor the patient and report potential problems. Furthermore, self-recording is inconvenient and unreliable. To address these challenges, wearable health monitoring is emerging as an effective way to augment clinical care for movement disorders.

Wearable devices are being used in many health, fitness, and activity monitoring applications. However, their widespread adoption has been hindered by several adaptation and technical challenges. First, conventional rigid devices are uncomfortable to wear for long periods. Second, wearable devices must operate under very low-energy budgets due to their small battery capacities. Small batteries create a need for frequent recharging, which in turn leads users to stop using them. Third, the usefulness of wearable devices must be demonstrated through high impact applications such that users can get value out of them.

This dissertation presents solutions to solving the challenges faced by wearable devices. First, it presents an open-source hardware/software platform for wearable health monitoring. The proposed platform uses flexible hybrid electronics to enable devices that conform to the shape of the user’s body. Second, it proposes an algorithm to enable recharge-free operation of wearable devices that harvest energy from the environment. The proposed solution maximizes the performance of the wearable device under minimum energy constraints. The results of the proposed algorithm are, on average, within 3% of the optimal solution computed offline. Third, a comprehensive framework for human activity recognition (HAR), one of the first steps towards a solution for movement disorders is presented. It starts with an online learning framework for HAR. Experiments on a low power IoT device (TI-CC2650 MCU) with twenty-two users show 95% accuracy in identifying seven activities and their transitions with less than 12.5 mW power consumption. The online learning framework is accompanied by a transfer learning approach for HAR that determines the number of neural network layers to transfer among uses to enable efficient online learning. Next, a technique to co-optimize the accuracy and active time of wearable applications by utilizing multiple design points with different energy-accuracy trade-offs is presented. The proposed technique switches between the design points at runtime to maximize a generalized objective function under tight harvested energy budget constraints. Finally, we present the first ultra-low-energy hardware accelerator that makes it practical to perform HAR on energy harvested from wearable devices. The accelerator consumes 22.4 microjoules per operation using a commercial 65 nm technology. In summary, the solutions presented in this dissertation can enable the wider adoption of wearable devices.
ContributorsBhat, Ganapati (Author) / Ogras, Umit Y. (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Nedić, Angelia (Committee member) / Marculescu, Radu (Committee member) / Arizona State University (Publisher)
Created2020
157855-Thumbnail Image.png
Description
This thesis presents efficient implementations of several linear algebra kernels, machine learning kernels and a neural network based recommender systems engine onto a massively parallel reconfigurable architecture, Transformer. The linear algebra kernels include Triangular Matrix Solver (TRSM), LU Decomposition (LUD), QR Decomposition (QRD), and Matrix Inversion. The machine learning kernels

This thesis presents efficient implementations of several linear algebra kernels, machine learning kernels and a neural network based recommender systems engine onto a massively parallel reconfigurable architecture, Transformer. The linear algebra kernels include Triangular Matrix Solver (TRSM), LU Decomposition (LUD), QR Decomposition (QRD), and Matrix Inversion. The machine learning kernels include an LSTM (Long Short Term Memory) cell, and a GRU (gated Recurrent Unit) cell used in recurrent neural networks. The neural network based recommender systems engine consists of multiple kernels including fully connected layers, embedding layer, 1-D batchnorm, Adam optimizer, etc.

Transformer is a massively parallel reconfigurable multicore architecture designed at the University of Michigan. The Transformer configuration considered here is 4 tiles and 16 General Processing Elements (GPEs) per tile. It supports a two level cache hierarchy where the L1 and L2 caches can operate in shared (S) or private (P) modes. The architecture was modeled using Gem5 and cycle accurate simulations were done to evaluate the performance in terms of execution times, giga-operations per second per Watt (GOPS/W), and giga-floating-point-operations per second per Watt (GFLOPS/W).

This thesis shows that for linear algebra kernels, each kernel achieves high performance for a certain cache mode and that this cache mode can change when the matrix size changes. For instance, for smaller matrix sizes, L1P, L2P cache mode is best for TRSM, while L1S, L2S is the best cache mode for LUD, and L1P, L2S is the best for QRD. For each kernel, the optimal cache mode changes when the matrix size is increased. For instance, for TRSM, the L1P, L2P cache mode is best for smaller matrix sizes ($N=64, 128, 256, 512$) and it changes to L1S, L2P for larger matrix sizes ($N=1024$). For machine learning kernels, L1P, L2P is the best cache mode for all network parameter sizes.

Gem5 simulations show that the peak performance for TRSM, LUD, QRD and Matrix Inverse in the 14nm node is 97.5, 59.4, 133.0 and 83.05 GFLOPS/W, respectively. For LSTM and GRU, the peak performance is 44.06 and 69.3 GFLOPS/W.

The neural network based recommender system was implemented in L1S, L2S cache mode. It includes a forward pass and a backward pass and is significantly more complex in terms of both computational complexity and data movement. The most computationally intensive block is the fully connected layer followed by Adam optimizer. The overall performance of the recommender systems engine is 54.55 GFLOPS/W and 169.12 GOPS/W.
ContributorsSoorishetty, Anuraag (Author) / Chakrabarti, Chaitali (Thesis advisor) / Kim, Hun Seok (Committee member) / LiKamWa, Robert (Committee member) / Arizona State University (Publisher)
Created2019
158876-Thumbnail Image.png
Description
Lattice-based Cryptography is an up and coming field of cryptography that utilizes the difficulty of lattice problems to design lattice-based cryptosystems that are resistant to quantum attacks and applicable to Fully Homomorphic Encryption schemes (FHE). In this thesis, the parallelization of the Residue Number System (RNS) and algorithmic efficiency of

Lattice-based Cryptography is an up and coming field of cryptography that utilizes the difficulty of lattice problems to design lattice-based cryptosystems that are resistant to quantum attacks and applicable to Fully Homomorphic Encryption schemes (FHE). In this thesis, the parallelization of the Residue Number System (RNS) and algorithmic efficiency of the Number Theoretic Transform (NTT) are combined to tackle the most significant bottleneck of polynomial ring multiplication with the hardware design of an optimized RNS-based NTT polynomial multiplier. The design utilizes Negative Wrapped Convolution, the NTT, RNS Montgomery reduction with Bajard and Shenoy extensions, and optimized modular 32-bit channel arithmetic for nine RNS channels to accomplish an RNS polynomial multiplication. In addition to a full software implementation of the whole system, a pipelined and optimized RNS-based NTT unit with 4 RNS butterflies is implemented on the Xilinx Artix-7 FPGA(xc7a200tlffg1156-2L) for size and delay estimates. The hardware implementation achieves an operating frequency of 47.043 MHz and utilizes 13239 LUT's, 4010 FF's, and 330 DSP blocks, allowing for multiple simultaneously operating NTT units depending on FGPA size constraints.
ContributorsBrist, Logan Alan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2020
156813-Thumbnail Image.png
Description
Articial Neural Network(ANN) has become a for-bearer in the field of Articial Intel-

ligence. The innovations in ANN has led to ground breaking technological advances

like self-driving vehicles,medical diagnosis,speech Processing,personal assistants and

many more. These were inspired by evolution and working of our brains. Similar

to how our brain evolved using a combination of

Articial Neural Network(ANN) has become a for-bearer in the field of Articial Intel-

ligence. The innovations in ANN has led to ground breaking technological advances

like self-driving vehicles,medical diagnosis,speech Processing,personal assistants and

many more. These were inspired by evolution and working of our brains. Similar

to how our brain evolved using a combination of epigenetics and live stimulus,ANN

require training to learn patterns.The training usually requires a lot of computation

and memory accesses. To realize these systems in real embedded hardware many

Energy/Power/Performance issues needs to be solved. The purpose of this research

is to focus on methods to study data movement requirement for generic Neural Net-

work along with the energy associated with it and suggest some ways to improve the

design.Many methods have suggested ways to optimize using mix of computation and

data movement solutions without affecting task accuracy. But these methods lack a

computation model to calculate the energy and depend on mere back of the envelope calculation. We realized that there is a need for a generic quantitative analysis

for memory access energy which helps in better architectural exploration. We show

that the present architectural tools are either incompatible or too slow and we need

a better analytical method to estimate data movement energy. We also propose a

simplistic yet effective approach that is robust and expandable by users to support

various systems.
ContributorsChowdary, Hidayatullah (Author) / Cao, Yu (Thesis advisor) / Seo, JaeSun (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2018