Matching Items (156)
Filtering by

Clear all filters

149992-Thumbnail Image.png
Description
Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness,

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate. There are several analytical models to estimate nominal delay performance but very little work has been done to accurately model delay variability. The proposed model is comprehensive and estimates nominal delay and variability as a function of transistor width, load capacitance and transition time. First, models are developed for library gates and the accuracy of the models is verified with HSPICE simulations for 45nm and 32nm technology nodes. The difference between predicted and simulated σ/μ for the library gates is less than 1%. Next, the accuracy of the model for nominal delay is verified for larger circuits including ISCAS'85 benchmark circuits. The model predicted results are within 4% error of HSPICE simulated results and take a small fraction of the time, for 45nm technology. Delay variability is analyzed for various paths and it is observed that non-critical paths can become critical because of Vth variation. Variability on shortest paths show that rate of hold violations increase enormously with increasing Vth variation.
ContributorsGummalla, Samatha (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150375-Thumbnail Image.png
Description
Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for

Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for current sensing such as external resistor sensing, triode mode current mirroring, observer sensing, Hall-Effect sensors, transformers, DC Resistance (DCR) sensing, Gm-C filter sensing etc. However, each method has one or more issues that prevent them from being successfully applied in DC-DC converter, e.g. low accuracy, discontinuous sensing nature, high sensitivity to switching noise, high cost, requirement of known external power filter components, bulky size, etc. In this dissertation, an offset-independent inductor Built-In Self Test (BIST) architecture is proposed which is able to measure the inductor inductance and DCR. The measured DCR enables the proposed continuous, lossless, average current sensing scheme. A digital Voltage Mode Control (VMC) DC-DC buck converter with the inductor BIST and current sensing architecture is designed, fabricated, and experimentally tested. The average measurement errors for inductance, DCR and current sensing are 2.1%, 3.6%, and 1.5% respectively. For the 3.5mm by 3.5mm die area, inductor BIST and current sensing circuits including related pins only consume 5.2% of the die area. BIST mode draws 40mA current for a maximum time period of 200us upon start-up and the continuous current sensing consumes about 400uA quiescent current. This buck converter utilizes an adaptive compensator. It could update compensator internally so that the overall system has a proper loop response for large range inductance and load current. Next, a digital Average Current Mode Control (ACMC) DC-DC buck converter with the proposed average current sensing circuits is designed and tested. To reduce chip area and power consumption, a 9 bits hybrid Digital Pulse Width Modulator (DPWM) which uses a Mixed-mode DLL (MDLL) is also proposed. The DC-DC converter has a maximum of 12V input, 1-11 V output range, and a maximum of 3W output power. The maximum error of one least significant bit (LSB) delay of the proposed DPWM is less than 1%.
ContributorsLiu, Tao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Committee member) / Vermeire, Bert (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2011
150360-Thumbnail Image.png
Description
A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to

A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors.
ContributorsSinha, Saurabh (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Yu, Hongbin (Committee member) / Christen, Jennifer B. (Committee member) / Arizona State University (Publisher)
Created2011
149893-Thumbnail Image.png
Description
Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current

Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current measurement across an external sense resistor (RS) in series to current flow. Two different types of CSMs designed and characterized in this paper. First design used direct current reading method and the other design used indirect current reading method. Proposed CSM systems can sense power supply current ranging from 1mA to 200mA for the direct current reading topology and from 1mA to 500mA for the indirect current reading topology across a typical board Cu-trace resistance of 1 ohm with less than 10 µV input-referred offset, 0.3 µV/°C offset drift and 0.1% accuracy for both topologies. Proposed systems avoid using a costly zero-temperature coefficient (TC) sense resistor that is normally used in typical CSM systems. Instead, both of the designs used existing Cu-trace on the printed circuit board (PCB) in place of the costly resistor. The systems use chopper stabilization at the front-end amplifier signal path to suppress input-referred offset down to less than 10 µV. Switching current-mode (SI) FIR filtering technique is used at the instrumentation amplifier output to filter out the chopping ripple caused by input offset and flicker noise by averaging half of the phase 1 signal and the other half of the phase 2 signal. In addition, residual offset mainly caused by clock feed-through and charge injection of the chopper switches at the chopping frequency and its multiple frequencies notched out by the since response of the SI-FIR filter. A frequency domain Sigma Delta ADC which is used for the indirect current reading type design enables a digital interface to processor applications with minimally added circuitries to build a simple 1st order Sigma Delta ADC. The CSMs are fabricated on a 0.7µm CMOS process with 3 levels of metal, with maximum Vds tolerance of 8V and operates across a common mode range of 0 to 26V for the direct current reading type and of 0 to 30V for the indirect current reading type achieving less than 10nV/sqrtHz of flicker noise at 100 Hz for both approaches. By using a semi-digital SI-FIR filter, residual chopper offset is suppressed down to 0.5mVpp from a baseline of 8mVpp, which is equivalent to 25dB suppression.
ContributorsYeom, Hyunsoo (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2011
149937-Thumbnail Image.png
Description
There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon

There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) process flow. This makes a silicon MESFET transistor a very valuable device for use in any standard CMOS circuit that may usually need a separate integrated circuit (IC) in order to switch power on or from a high current/voltage because it allows this function to be performed with a single chip thereby cutting costs. The ability for the MESFET to cost effectively satisfy the needs of this any many other high current/voltage device application markets is what drives the study of MESFET optimization. Silicon MESFETs that are integrated into standard SOI CMOS processes often receive dopings during fabrication that would not ideally be there in a process made exclusively for MESFETs. Since these remnants of SOI CMOS processing effect the operation of a MESFET device, their effect can be seen in the current-voltage characteristics of a measured MESFET device. Device simulations are done and compared to measured silicon MESFET data in order to deduce the cause and effect of many of these SOI CMOS remnants. MESFET devices can be made in both fully depleted (FD) and partially depleted (PD) SOI CMOS technologies. Device simulations are used to do a comparison of FD and PD MESFETs in order to show the advantages and disadvantages of MESFETs fabricated in different technologies. It is shown that PD MESFET have the highest current per area capability. Since the PD MESFET is shown to have the highest current capability, a layout optimization method to further increase the current per area capability of the PD silicon MESFET is presented, derived, and proven to a first order.
ContributorsSochacki, John (Author) / Thornton, Trevor J (Thesis advisor) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
149909-Thumbnail Image.png
Description
ABSTRACT The purpose of this study is to demonstrate that stable lipid bilayers can be set up on an array of silicon micropores and can be used as sites for self-inserting ion-channel proteins which can be studied independently of each other. In course of this study an acrylic

ABSTRACT The purpose of this study is to demonstrate that stable lipid bilayers can be set up on an array of silicon micropores and can be used as sites for self-inserting ion-channel proteins which can be studied independently of each other. In course of this study an acrylic based holder was designed and machined to ensure leak-free fluidic access to the silicon micropores and physical isolation of the individual array channels. To measure the ion-channel currents, we simulated, designed and manufactured low-noise transimpedance amplifiers and support circuits based on published patch clamp amplifier designs, using currently available surface-mount components. This was done in order to achieve a reduction in size and costs as well as isolation of individual channels without the need for multiplexing of the input. During the experiments performed, stable bilayers were formed across an array of four vertically mounted 30 µm silicon micropores and OmpF porins were added for self insertion in each of the bilayers. To further demonstrate the independence of these bilayer recording sites, the antibiotic Ampicillin (2.5 mM) was added to one of the fluidic wells. The ionic current in each of the wells was recorded simultaneously. Sub-conductance states of Ompf porin were observed in two of the measurement sites. In addition, the conductance steps in the site containing the antibiotic could be clearly seen to be larger compared to those of the unmodified site. This is due to the transient blocking of ion flow through the porin due to translocation of the antibiotic. Based on this demonstration, ion-channel array reconstitution is a potential method for efficient electrophysiological characterization of different types of ion-channels simultaneously as well as for studying membrane permeation processes.
ContributorsRamakrishnan, Shankar (Author) / Goryll, Michael (Thesis advisor) / Thornton, Trevor J (Committee member) / Blain Christen, Jennifer M (Committee member) / Arizona State University (Publisher)
Created2011
149962-Thumbnail Image.png
Description
In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow

In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow the path of microelectronics, the fundamental physics in a nanoscale system changes more rapidly compared to microelectronics, as the size scale is decreased. The changes in length, area, and volume ratios due to reduction in size alter the relative influence of various physical effects determining the overall operation of a system in unexpected ways. One such category of nanofluidic structures demonstrating unique ionic and molecular transport characteristics are nanopores. Nanopores derive their unique transport characteristics from the electrostatic interaction of nanopore surface charge with aqueous ionic solutions. In this doctoral research cylindrical nanopores, in single and array configuration, were fabricated in silicon-on-insulator (SOI) using a combination of electron beam lithography (EBL) and reactive ion etching (RIE). The fabrication method presented is compatible with standard semiconductor foundries and allows fabrication of nanopores with desired geometries and precise dimensional control, providing near ideal and isolated physical modeling systems to study ion transport at the nanometer level. Ion transport through nanopores was characterized by measuring ionic conductances of arrays of nanopores of various diameters for a wide range of concentration of aqueous hydrochloric acid (HCl) ionic solutions. Measured ionic conductances demonstrated two distinct regimes based on surface charge interactions at low ionic concentrations and nanopore geometry at high ionic concentrations. Field effect modulation of ion transport through nanopore arrays, in a fashion similar to semiconductor transistors, was also studied. Using ionic conductance measurements, it was shown that the concentration of ions in the nanopore volume was significantly changed when a gate voltage on nanopore arrays was applied, hence controlling their transport. Based on the ion transport results, single nanopores were used to demonstrate their application as nanoscale particle counters by using polystyrene nanobeads, monodispersed in aqueous HCl solutions of different molarities. Effects of field effect modulation on particle transition events were also demonstrated.
ContributorsJoshi, Punarvasu (Author) / Thornton, Trevor J (Thesis advisor) / Goryll, Michael (Thesis advisor) / Spanias, Andreas (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
149956-Thumbnail Image.png
Description
CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental

CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental physics. They are inherent to CMOS structure, considered as one of the ultimate barriers to the continual scaling of CMOS devices. In this work the three primary intrinsic variations sources are studied, including random dopant fluctuation (RDF), line-edge roughness (LER) and oxide thickness fluctuation (OTF). The research is focused on the modeling and simulation of those variations and their scaling trends. Besides the three variations, a time dependent variation source, Random Telegraph Noise (RTN) is also studied. Different from the other three variations, RTN does not contribute much to the total variation amount, but aggregate the worst case of Vth variations in CMOS. In this work a TCAD based simulation study on RTN is presented, and a new SPICE based simulation method for RTN is proposed for time domain circuit analysis. Process-induced variations arise from the imperfection in silicon fabrication, and vary from foundries to foundries. In this work the layout dependent Vth shift due to Rapid-Thermal Annealing (RTA) are investigated. In this work, we develop joint thermal/TCAD simulation and compact modeling tools to analyze performance variability under various layout pattern densities and RTA conditions. Moreover, we propose a suite of compact models that bridge the underlying RTA process with device parameter change for efficient design optimization.
ContributorsYe, Yun, Ph.D (Author) / Cao, Yu (Thesis advisor) / Yu, Hongbin (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2011
149852-Thumbnail Image.png
Description
Negative bias temperature instability (NBTI) and channel hot carrier (CHC) are important reliability issues impacting analog circuit performance and lifetime. Compact reliability models and efficient simulation methods are essential for circuit level reliability prediction. This work proposes a set of compact models of NBTI and CHC effects for analog and

Negative bias temperature instability (NBTI) and channel hot carrier (CHC) are important reliability issues impacting analog circuit performance and lifetime. Compact reliability models and efficient simulation methods are essential for circuit level reliability prediction. This work proposes a set of compact models of NBTI and CHC effects for analog and mixed-signal circuit, and a direct prediction method which is different from conventional simulation methods. This method is applied in circuit benchmarks and evaluated. This work helps with improving efficiency and accuracy of circuit aging prediction.
ContributorsZheng, Rui (Author) / Cao, Yu (Thesis advisor) / Yu, Hongyu (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011