Matching Items (143)
Filtering by

Clear all filters

151540-Thumbnail Image.png
Description
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with

The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with the growing penetration of the CHP-based DG. Subse-quently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and sit-ing for a larger test bed with the given information of energy infrastructures. In this con-text, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The pro-posed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation per-formances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electrici-ty, gas, and water system models were developed individually and coupled by the devel-oped CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
ContributorsZhang, Xianjun (Author) / Karady, George G. (Thesis advisor) / Ariaratnam, Samuel T. (Committee member) / Holbert, Keith E. (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
151306-Thumbnail Image.png
Description
Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of microscale sensors that are used for sensing applications, ranging from whole-body monitoring down to molecular sensing. Unfortunately, sensors are often developed without regard to how they will be integrated into biological systems. The complexities of integration are underappreciated. Integration involves more than simply making electrical connections. Interfacing microscale sensors with biological environments requires numerous considerations with respect to the creation of compatible packaging, the management of biological reagents, and the act of combining technologies with different dimensions and material properties. Recent advances in microfluidics, especially the proliferation of soft lithography manufacturing methods, have established the groundwork for creating systems that may solve many of the problems inherent to sensor-fluidic interaction. The adaptation of microelectronics manufacturing methods, such as Complementary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical Systems (MEMS) processes, allows the creation of a complete biological sensing system with integrated sensors and readout circuits. Combining these technologies is an obstacle to forming complete sensor systems. This dissertation presents new approaches for the design, fabrication, and integration of microscale sensors and microelectronics with microfluidics. The work addresses specific challenges, such as combining commercial manufacturing processes into biological systems and developing microscale sensors in these processes. This work is exemplified through a feedback-controlled microfluidic pH system to demonstrate the integration capabilities of microscale sensors for autonomous microenvironment control.
ContributorsWelch, David (Author) / Blain Christen, Jennifer (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Frakes, David (Committee member) / LaBelle, Jeffrey (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
151512-Thumbnail Image.png
Description
Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7

Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7 μm achievable using lattice matched GaInAs. The large lattice mismatch required to reach the extended wavelengths results in photodetector materials that contain a large number of misfit dislocations. The low quality of these materials results in a large nonradiative Shockley Read Hall generation/recombination rate that is manifested as an undesirable large thermal noise level in these photodetectors. This work focuses on utilizing the different band structure engineering methods to design more efficient devices on InP substrates. One prospective way to improve photodetector performance at the extended wavelengths is to utilize lattice matched GaInAs/GaAsSb structures that have a type-II band alignment, where the ground state transition energy of the superlattice is smaller than the bandgap of either constituent material. Over the extended wavelength range of 2 to 3 μm this superlattice structure has an optimal period thickness of 3.4 to 5.2 nm and a wavefunction overlap of 0.8 to 0.4, respectively. In using a type-II superlattice to extend the cutoff wavelength there is a tradeoff between the wavelength reached and the electron-hole wavefunction overlap realized, and hence absorption coefficient achieved. This tradeoff and the subsequent reduction in performance can be overcome by two methods: adding bismuth to this type-II material system; applying strain on both layers in the system to attain strain-balanced condition. These allow the valance band alignment and hence the wavefunction overlap to be tuned independently of the wavelength cutoff. Adding 3% bismuth to the GaInAs constituent material, the resulting lattice matched Ga0.516In0.484As0.970Bi0.030/GaAs0.511Sb0.489superlattice realizes a 50% larger absorption coefficient. While as, similar results can be achieved with strain-balanced condition with strain limited to 1.9% on either layer. The optimal design rules derived from the different possibilities make it feasible to extract superlattice period thickness with the best absorption coefficient for any cutoff wavelength in the range.  
ContributorsSharma, Ankur R (Author) / Johnson, Shane (Thesis advisor) / Goryll, Michael (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
151947-Thumbnail Image.png
Description
GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that of GaAs-based HEMT and mobility much higher than Si enables

GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that of GaAs-based HEMT and mobility much higher than Si enables a low on-resistance required for RF devices. Self-heating issues with GaN HEMT and lack of understanding of various phenomena are hindering their widespread commercial development. There is a need to understand device operation by developing a model which could be used to optimize electrical and thermal characteristics of GaN HEMT design for high power and high frequency operation. In this thesis work a physical simulation model of AlGaN/GaN HEMT is developed using commercially available software ATLAS from SILVACO Int. based on the energy balance/hydrodynamic carrier transport equations. The model is calibrated against experimental data. Transfer and output characteristics are the key focus in the analysis along with saturation drain current. The resultant IV curves showed a close correspondence with experimental results. Various combinations of electron mobility, velocity saturation, momentum and energy relaxation times and gate work functions were attempted to improve IV curve correlation. Thermal effects were also investigated to get a better understanding on the role of self-heating effects on the electrical characteristics of GaN HEMTs. The temperature profiles across the device were observed. Hot spots were found along the channel in the gate-drain spacing. These preliminary results indicate that the thermal effects do have an impact on the electrical device characteristics at large biases even though the amount of self-heating is underestimated with respect to thermal particle-based simulations that solve the energy balance equations for acoustic and optical phonons as well (thus take proper account of the formation of the hot-spot). The decrease in drain current is due to decrease in saturation carrier velocity. The necessity of including hydrodynamic/energy balance transport models for accurate simulations is demonstrated. Possible ways for improving model accuracy are discussed in conjunction with future research.
ContributorsChowdhury, Towhid (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151953-Thumbnail Image.png
Description
Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.
ContributorsDasarathan, Sivaraman (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Reisslein, Martin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
Description
The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and

The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.
ContributorsBanerjee, Koustubh (Author) / Gorur, Ravi (Committee member) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
152447-Thumbnail Image.png
Description
Analysing and measuring of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. Point of care diagnostic system, composing of biosensors, have promising applications for providing cheap, accurate and portable diagnosis. Owing to these expanding medical applications and advances made by semiconductor industry biosensors have

Analysing and measuring of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. Point of care diagnostic system, composing of biosensors, have promising applications for providing cheap, accurate and portable diagnosis. Owing to these expanding medical applications and advances made by semiconductor industry biosensors have seen a tremendous growth in the past few decades. Also emergence of microfluidics and non-invasive biosensing applications are other marker propellers. Analyzing biological signals using transducers is difficult due to the challenges in interfacing an electronic system to the biological environment. Detection limit, detection time, dynamic range, specificity to the analyte, sensitivity and reliability of these devices are some of the challenges in developing and integrating these devices. Significant amount of research in the field of biosensors has been focused on improving the design, fabrication process and their integration with microfluidics to address these challenges. This work presents new techniques, design and systems to improve the interface between the electronic system and the biological environment. This dissertation uses CMOS circuit design to improve the reliability of these devices. Also this work addresses the challenges in designing the electronic system used for processing the output of the transducer, which converts biological signal into electronic signal.
ContributorsShah, Sahil S (Author) / Christen, Jennifer B (Thesis advisor) / Allee, David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
151546-Thumbnail Image.png
Description
Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types

Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.
ContributorsNadkarni, Aditya (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
Description
This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue

This research investigated using impedance as a minimally invasive oral cancer-screening tool by modeling healthy and diseased tissue. This research developed an ultra-structurally based tissue model for oral mucosa that is versatile enough to be easily modified to mimic the passive electrical impedance responses of multiple benign and cancerous tissue types. This new model provides answers to biologically meaningful questions related to the impedance response of healthy and diseased tissues. This model breaks away from the old empirical top down "black box" Thèvinin equivalent model. The new tissue model developed here was created from a bottom up perspective resulting in a model that is analogous to having a "Transparent Box" where each network element relating to a specific structural component is known. This new model was developed starting with sub cellular ultra-structural components such as membranes, proteins and electrolytes. These components formed the basic network elements and topology of the organelles. The organelle networks combine to form the cell networks. The cell networks combine to make networks of cell layers and the cell layers were combined into tissue networks. This produced the complete "Transparent Box" model for normal tissue. This normal tissue model was modified for disease based on the ultra-structural pathology of each disease. The diseased tissues evaluated include cancers type one through type three; necrotic-inflammation, hyperkeratosis and the compound condition of hyperkeratosis over cancer type two. The impedance responses for each of the disease were compared side by side with the response of normal healthy tissue. Comparative evidence from the models showed the structural changes in cancer produce a unique identifiable impedance "finger print." The evaluation of the "Transparent Box" model for normal tissues and diseased tissues show clear support for using comparative impedance measurements as a clinical tool for oral cancer screening.
ContributorsPelletier, Peter Robert (Author) / Kozicki, Michael (Thesis advisor) / Towe, Bruce (Committee member) / Saraniti, Marco (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
150440-Thumbnail Image.png
Description
Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and

Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and High-Resolution (HR) image quality. Existing SR approaches suffer from extremely high computational requirements due to the high number of unknowns to be estimated in the solution of the SR inverse problem. This thesis proposes efficient iterative SR techniques based on Visual Attention (VA) and perceptual modeling of the human visual system. In the first part of this thesis, an efficient ATtentive-SELective Perceptual-based (AT-SELP) SR framework is presented, where only a subset of perceptually significant active pixels is selected for processing by the SR algorithm based on a local contrast sensitivity threshold model and a proposed low complexity saliency detector. The proposed saliency detector utilizes a probability of detection rule inspired by concepts of luminance masking and visual attention. The second part of this thesis further enhances on the efficiency of selective SR approaches by presenting an ATtentive (AT) SR framework that is completely driven by VA region detectors. Additionally, different VA techniques that combine several low-level features, such as center-surround differences in intensity and orientation, patch luminance and contrast, bandpass outputs of patch luminance and contrast, and difference of Gaussians of luminance intensity are integrated and analyzed to illustrate the effectiveness of the proposed selective SR frameworks. The proposed AT-SELP SR and AT-SR frameworks proved to be flexible by integrating a Maximum A Posteriori (MAP)-based SR algorithm as well as a fast two-stage Fusion-Restoration (FR) SR estimator. By adopting the proposed selective SR frameworks, simulation results show significant reduction on average in computational complexity with comparable visual quality in terms of quantitative metrics such as PSNR, SNR or MAE gains, and subjective assessment. The third part of this thesis proposes a Perceptually Weighted (WP) SR technique that incorporates unequal weighting parameters in the cost function of iterative SR problems. The proposed approach is inspired by the unequal processing of the Human Visual System (HVS) to different local image features in an image. Simulation results show an enhanced reconstruction quality and faster convergence rates when applied to the MAP-based and FR-based SR schemes.
ContributorsSadaka, Nabil (Author) / Karam, Lina J (Thesis advisor) / Spanias, Andreas S (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Abousleman, Glen P (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011