Matching Items (5)
Filtering by

Clear all filters

151779-Thumbnail Image.png
Description
Photovoltaic (PV) module nameplates typically provide the module's electrical characteristics at standard test conditions (STC). The STC conditions are: irradiance of 1000 W/m2, cell temperature of 25oC and sunlight spectrum at air mass 1.5. However, modules in the field experience a wide range of environmental conditions which affect their electrical

Photovoltaic (PV) module nameplates typically provide the module's electrical characteristics at standard test conditions (STC). The STC conditions are: irradiance of 1000 W/m2, cell temperature of 25oC and sunlight spectrum at air mass 1.5. However, modules in the field experience a wide range of environmental conditions which affect their electrical characteristics and render the nameplate data insufficient in determining a module's overall, actual field performance. To make sound technical and financial decisions, designers and investors need additional performance data to determine the energy produced by modules operating under various field conditions. The angle of incidence (AOI) of sunlight on PV modules is one of the major parameters which dictate the amount of light reaching the solar cells. The experiment was carried out at the Arizona State University- Photovoltaic Reliability Laboratory (ASU-PRL). The data obtained was processed in accordance with the IEC 61853-2 model to obtain relative optical response of the modules (response which does not include the cosine effect). The results were then compared with theoretical models for air-glass interface and also with the empirical model developed by Sandia National Laboratories. The results showed that all modules with glass as the superstrate had identical optical response and were in agreement with both the IEC 61853-2 model and other theoretical and empirical models. The performance degradation of module over years of exposure in the field is dependent upon factors such as environmental conditions, system configuration, etc. Analyzing the degradation of power and other related performance parameters over time will provide vital information regarding possible degradation rates and mechanisms of the modules. An extensive study was conducted by previous ASU-PRL students on approximately 1700 modules which have over 13 years of hot- dry climatic field condition. An analysis of the results obtained in previous ASU-PRL studies show that the major degradation in crystalline silicon modules having glass/polymer construction is encapsulant discoloration (causing short circuit current drop) and solder bond degradation (causing fill factor drop due to series resistance increase). The power degradation for crystalline silicon modules having glass/glass construction was primarily attributed to encapsulant delamination (causing open-circuit voltage drop).
ContributorsVasantha Janakeeraman, Suryanarayana (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2013
152336-Thumbnail Image.png
Description
Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.
ContributorsHu, Jianchen (Author) / Macia, Narciso (Thesis advisor) / Pollat, Scott (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
150342-Thumbnail Image.png
Description
Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance,

Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance, air temperature, wind speed and wind direction. The lower operating temperature of PV modules due to fan operation mitigates array non uniformity and improves on performance. A crystalline silicon (c-Si) PV module has a light to electrical conversion efficiency of 14-20%. So on a cool sunny day with incident solar irradiance of 1000 W/m2, a PV module with 15% efficiency, will produce about only 150 watts. The rest of the energy is primarily lost in the form of heat. Heat extraction methods for BAPV systems may become increasingly higher in demand as the hot stagnant air underneath the array can be extracted to improve the array efficiency and the extracted low-temperature heat can also be used for residential space heating and water heating. Poly c-Si modules experience a negative temperature coefficient of power at about -0.5% /o C. A typical poly c-Si module would experience power loss due to elevation in temperature, which may be in the range of 25 to 30% for desert conditions such as that of Mesa, Arizona. This thesis investigates the effect of fan cooling on the previously developed thermal models at Arizona State University and on the performance of PV modules/arrays. Ambient conditions are continuously monitored and collected to calculate module temperature using the thermal model and to compare with actually measured temperature of individual modules. Including baseline analysis, the thesis has also looked into the effect of fan on the test array in three stages of 14 continuous days each. Multiple Thermal models are developed in order to identify the effect of fan cooling on performance and temperature uniformity. Although the fan did not prove to have much significant cooling effect on the system, but when combined with wind blocks it helped improve the thermal mismatch both under low and high wind speed conditions.
ContributorsChatterjee, Saurabh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
149396-Thumbnail Image.png
Description
Photovoltaic (PV) modules appear to have three classifications of failure: Infant mortality, normal-life failure, and end-of-life failure. Little is known of the end-of-life failures experienced by PV modules due to their inherent longevity. Accelerated Life Testing (ALT) has been at the crux of this lifespan prediction; however, without naturally failing

Photovoltaic (PV) modules appear to have three classifications of failure: Infant mortality, normal-life failure, and end-of-life failure. Little is known of the end-of-life failures experienced by PV modules due to their inherent longevity. Accelerated Life Testing (ALT) has been at the crux of this lifespan prediction; however, without naturally failing modules an accurate acceleration factor cannot be determined for use in ALT. By observing modules that have been aged in the field, a comparison can be made with modules undergoing accelerated testing. In this study an investigation on about 1900 aged (10-17 years) grid-tied PV modules installed in the desert climatic condition of Arizona was undertaken. The investigation was comprised of a check sheet that documented any visual defects and their severity, infrared (IR) scanning, and current-voltage (I-V) curve measurements. After data was collected on modules, an analysis was performed to classify the failure modes and to determine the annual performance degradation rates.
ContributorsSuleske, Adam Alfred (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2010
149345-Thumbnail Image.png
Description
Thermal modeling and investigation into heat extraction methods for building-applied photovoltaic (BAPV) systems have become important for the industry in order to predict energy production and lower the cost per kilowatt-hour (kWh) of generating electricity from these types of systems. High operating temperatures have a direct impact on the performance

Thermal modeling and investigation into heat extraction methods for building-applied photovoltaic (BAPV) systems have become important for the industry in order to predict energy production and lower the cost per kilowatt-hour (kWh) of generating electricity from these types of systems. High operating temperatures have a direct impact on the performance of BAPV systems and can reduce power output by as much as 10 to 20%. The traditional method of minimizing the operating temperature of BAPV modules has been to include a suitable air gap for ventilation between the rooftop and the modules. There has been research done at Arizona State University (ASU) which investigates the optimum air gap spacing on sufficiently spaced (2-6 inch vertical; 2-inch lateral) modules of four columns. However, the thermal modeling of a large continuous array (with multiple modules of the same type and size and at the same air gap) had yet to be done at ASU prior to this project. In addition to the air gap effect analysis, the industry is exploring different ways of extracting the heat from PV modules including hybrid photovoltaic-thermal systems (PV/T). The goal of this project was to develop a thermal model for a small residential BAPV array consisting of 12 identical polycrystalline silicon modules at an air gap of 2.5 inches from the rooftop. The thermal model coefficients are empirically derived from a simulated field test setup at ASU and are presented in this thesis. Additionally, this project investigates the effects of cooling the array with a 40-Watt exhaust fan. The fan had negligible effect on power output or efficiency for this 2.5-inch air gap array, but provided slightly lower temperatures and better temperature uniformity across the array.
ContributorsHrica, Jonathan Kyler (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2010