Matching Items (38)
Filtering by

Clear all filters

152149-Thumbnail Image.png
Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
151322-Thumbnail Image.png
Description
With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated

With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated with the operation of smart grids, this dissertation addresses two important aspects of smart grids: increased penetration of renewable resources, and increased reliance on sensor systems to improve reliability and performance of critical power system components. Present renewable portfolio standards are changing both structural and performance characteristics of power systems by replacing conventional generation with alternate energy resources such as photovoltaic (PV) systems. The present study investigates the impact of increased penetration of PV systems on steady state performance as well as transient stability of a large power system which is a portion of the Western U.S. interconnection. Utility scale and residential rooftop PVs are added to replace a portion of conventional generation resources. While steady state voltages are observed under various PV penetration levels, the impact of reduced inertia on transient stability performance is also examined. The simulation results obtained effectively identify both detrimental and beneficial impacts of increased PV penetration both for steady state stability and transient stability performance. With increased penetration of the renewable energy resources, and with the current loading scenario, more transmission system components such as transformers and circuit breakers are subject to increased stress and overloading. This research work explores the feasibility of increasing system reliability by applying condition monitoring systems to selected circuit breakers and transformers. A very important feature of smart grid technology is that this philosophy decreases maintenance costs by deploying condition monitoring systems that inform the operator of impending failures; or the approach can ameliorate problematic conditions. A method to identify the most critical transformers and circuit breakers with the aid of contingency ranking methods is presented in this study. The work reported in this dissertation parallels an industry sponsored study in which a considerable level of industry input and industry reported concerns are reflected.
ContributorsEftekharnejad, Sara (Author) / Heydt, Gerald (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Si, Jennie (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
152908-Thumbnail Image.png
Description
A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling

A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling technology for this particular circuit to attain good efficiency.

Traditionally, grid connected PV inverters required a transformer for isolation and safety. The disadvantage of high frequency transformer based inverters is complexity and cost. Transformerless inverters have become more popular recently, although they can be challenging to implement because of possible high frequency currents through the PV array's stay capacitance to earth ground. Conventional PV inverters also typically utilize electrolytic capacitors for bulk power buffering. However such capacitors can be prone to decreased reliability.

The solution proposed here to solve these problems is a bi directional buck boost converter combined with half bridge inverters. This configuration enables grounding of the array's negative terminal and passive power decoupling with only film capacitors.

Several aspects of the proposed converter are discussed. First a literature review is presented on the issues to be addressed. The proposed circuit is then presented and examined in detail. This includes theory of operation, component selection, and control systems. An efficiency analysis is also conducted. Simulation results are then presented that show correct functionality. A hardware prototype is built and experiment results also prove the concept. Finally some further developments are mentioned.

As a summary of the research a new topology and control technique were developed. The resultant circuit is a high performance transformerless PV inverter with upwards of 97% efficiency.
ContributorsBreazeale, Lloyd C (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2014
152922-Thumbnail Image.png
Description
Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the

Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the PV system. The sub-panel MPPT increases the efficiency of the PV during the shading and replaces the bypass diodes in the panels with an integrated MPPT and DC-DC regulator. For the integrated MPPT and regulator, the research developed an integrated standard CMOS low power and high common mode range Current-to-Digital Converter (IDC) circuit and its application for DC-DC regulator and MPPT. The proposed charge based CMOS switched-capacitor circuit directly digitizes the output current of the DC-DC regulator without an analog-to-digital converter (ADC) and the need for high-voltage process technology. Compared to the resistor based current-sensing methods that requires current-to-voltage circuit, gain block and ADC, the proposed CMOS IDC is a low-power efficient integrated circuit that achieves high resolution, lower complexity, and lower power consumption. The IDC circuit is fabricated on a 0.7 um CMOS process, occupies 2mm x 2mm and consumes less than 27mW. The IDC circuit has been tested and used for boost DC-DC regulator and MPPT for photo-voltaic system. The DC-DC converter has an efficiency of 95%. The sub-module level power optimization improves the output power of a shaded panel by up to 20%, compared to panel MPPT with bypass diodes.
ContributorsMarti-Arbona, Edgar (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
150671-Thumbnail Image.png
Description
Contemporary methods for dynamic security assessment (DSA) mainly re-ly on time domain simulations to explore the influence of large disturbances in a power system. These methods are computationally intensive especially when the system operating point changes continually. The trajectory sensitivity method, when implemented and utilized as a complement to the

Contemporary methods for dynamic security assessment (DSA) mainly re-ly on time domain simulations to explore the influence of large disturbances in a power system. These methods are computationally intensive especially when the system operating point changes continually. The trajectory sensitivity method, when implemented and utilized as a complement to the existing DSA time domain simulation routine, can provide valuable insights into the system variation in re-sponse to system parameter changes. The implementation of the trajectory sensitivity analysis is based on an open source power system analysis toolbox called PSAT. Eight categories of sen-sitivity elements have been implemented and tested. The accuracy assessment of the implementation demonstrates the validity of both the theory and the imple-mentation. The computational burden introduced by the additional sensitivity equa-tions is relieved by two innovative methods: one is by employing a cluster to per-form the sensitivity calculations in parallel; the other one is by developing a mod-ified very dishonest Newton method in conjunction with the latest sparse matrix processing technology. The relation between the linear approximation accuracy and the perturba-tion size is also studied numerically. It is found that there is a fixed connection between the linear approximation accuracy and the perturbation size. Therefore this finding can serve as a general application guide to evaluate the accuracy of the linear approximation. The applicability of the trajectory sensitivity approach to a large realistic network has been demonstrated in detail. This research work applies the trajectory sensitivity analysis method to the Western Electricity Coordinating Council (WECC) system. Several typical power system dynamic security problems, in-cluding the transient angle stability problem, the voltage stability problem consid-ering load modeling uncertainty and the transient stability constrained interface real power flow limit calculation, have been addressed. Besides, a method based on the trajectory sensitivity approach and the model predictive control has been developed for determination of under frequency load shedding strategy for real time stability assessment. These applications have shown the great efficacy and accuracy of the trajectory sensitivity method in handling these traditional power system stability problems.
ContributorsHou, Guanji (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Tylavsky, Daniel (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
151213-Thumbnail Image.png
Description
The reliability assessment of future distribution networks is an important issue in power engineering for both utilities and customers. This is due to the increasing demand for more reliable service with less interruption frequency and duration. This research consists of two main parts related to the evaluation of the future

The reliability assessment of future distribution networks is an important issue in power engineering for both utilities and customers. This is due to the increasing demand for more reliable service with less interruption frequency and duration. This research consists of two main parts related to the evaluation of the future distribution system reliability. An innovative algorithm named the encoded Markov cut set (EMCS) is proposed to evaluate the reliability of the networked power distribution system. The proposed algorithm is based on the identification of circuit minimal tie sets using the concept of Petri nets. Prime number encoding and unique prime factorization are then utilized to add more flexibility in communicating between the systems states, and to classify the states as tie sets, cut sets, or minimal cut sets. Different reduction and truncation techniques are proposed to reduce the size of the state space. The Markov model is used to compute the availability, mean time to failure, and failure frequency of the network. A well-known Test Bed is used to illustrate the analysis (the Roy Billinton test system (RBTS)), and different load and system reliability indices are calculated. The method shown is algorithmic and appears suitable for off-line comparison of alternative secondary distribution system designs on the basis of their reliability. The second part assesses the impact of the conventional and renewable distributed generation (DG) on the reliability of the future distribution system. This takes into account the variability of the power output of the renewable DG, such as wind and solar DGs, and the chronological nature of the load demand. The stochastic nature of the renewable resources and its influence on the reliability of the system are modeled and studied by computing the adequacy transition rate. Then, an integrated Markov model that incorporates the DG adequacy transition rate, DG mechanical failure, and starting and switching probability is proposed and utilized to give accurate results for the DG reliability impact. The main focus in this research is the conventional, solar, and wind DG units. However, the technique used appears to be applicable to any renewable energy source.
ContributorsAlmuhaini, Mohammad (Author) / Heydt, Gerald (Thesis advisor) / Ayyanar, Raja (Committee member) / Gel, Esma (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
150050-Thumbnail Image.png
Description
The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also

The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-width-modulated (PWM) single phase rectifier. A unified gyrator-based average model is developed for a general multi-active-bridge (MAB) converter controlled through phase-shift modulation (PSM). Expressions to determine the power rating of the MAB ports are also derived. The developed gyrator-based average model is applied to the QAB converter for faster simulations of the proposed SST during the control design process as well for deriving the state-space representation of the plant. Both linear quadratic regulator (LQR) and single-input-single-output (SISO) types of controllers are designed for the DC-DC stage. A novel technique that complements the SISO controller by taking into account the cross-coupling characteristics of the QAB converter is also presented herein. Cascaded SISO controllers are designed for the AC-DC stage. The QAB demanded power is calculated at the QAB controls and then fed into the rectifier controls in order to minimize the effect of the interaction between the two SST stages. The dynamic performance of the designed control loops based on the proposed control strategies are verified through extensive simulation of the SST average and switching models. The experimental results presented herein show that the transient responses for each control strategy match those from the simulations results thus validating them.
ContributorsFalcones, Sixifo Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
156189-Thumbnail Image.png
Description
Static CMOS logic has remained the dominant design style of digital systems for

more than four decades due to its robustness and near zero standby current. Static

CMOS logic circuits consist of a network of combinational logic cells and clocked sequential

elements, such as latches and flip-flops that are used for sequencing computations

over

Static CMOS logic has remained the dominant design style of digital systems for

more than four decades due to its robustness and near zero standby current. Static

CMOS logic circuits consist of a network of combinational logic cells and clocked sequential

elements, such as latches and flip-flops that are used for sequencing computations

over time. The majority of the digital design techniques to reduce power, area, and

leakage over the past four decades have focused almost entirely on optimizing the

combinational logic. This work explores alternate architectures for the flip-flops for

improving the overall circuit performance, power and area. It consists of three main

sections.

First, is the design of a multi-input configurable flip-flop structure with embedded

logic. A conventional D-type flip-flop may be viewed as realizing an identity function,

in which the output is simply the value of the input sampled at the clock edge. In

contrast, the proposed multi-input flip-flop, named PNAND, can be configured to

realize one of a family of Boolean functions called threshold functions. In essence,

the PNAND is a circuit implementation of the well-known binary perceptron. Unlike

other reconfigurable circuits, a PNAND can be configured by simply changing the

assignment of signals to its inputs. Using a standard cell library of such gates, a technology

mapping algorithm can be applied to transform a given netlist into one with

an optimal mixture of conventional logic gates and threshold gates. This approach

was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier

in 65nm LP technology. Simulation and chip measurements show more than 30%

improvement in dynamic power and more than 20% reduction in core area.

The functional yield of the PNAND reduces with geometry and voltage scaling.

The second part of this research investigates the use of two mechanisms to improve

the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM

devices for low voltage operation.

The third part of this research focused on the design of flip-flops with non-volatile

storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated

with both conventional D-flipflop and the PNAND circuits to implement non-volatile

logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of

system locally when a power interruption occurs. However, manufacturing variations

in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading

to an overly pessimistic design and consequently, higher energy consumption. A

detailed analysis of the design trade-offs in the driver circuitry for performing backup

and restore, and a novel method to design the energy optimal driver for a given yield is

presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented,

in which the backup time is determined on a per-chip basis, resulting in minimizing

the energy wastage and satisfying the yield constraint. To achieve a yield of 98%,

the conventional approach would have to expend nearly 5X more energy than the

minimum required, whereas the proposed tunable approach expends only 26% more

energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are

designed with the same backup and restore circuitry in 65nm technology. The embedded

logic in NV-TLFF compensates performance overhead of NVL. This leads to the

possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and-

accumulate (MAC) unit is designed to demonstrate the performance benefits of the

proposed architecture. Based on the results of HSPICE simulations, the MAC circuit

with the proposed NV-TLFF cells is shown to consume at least 20% less power and

area as compared to the circuit designed with conventional DFFs, without sacrificing

any performance.
ContributorsYang, Jinghua (Author) / Vrudhula, Sarma (Thesis advisor) / Barnaby, Hugh (Committee member) / Cao, Yu (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2018
156195-Thumbnail Image.png
Description
Over the past few decades, the silicon complementary-metal-oxide-semiconductor (CMOS) technology has been greatly scaled down to achieve higher performance, density and lower power consumption. As the device dimension is approaching its fundamental physical limit, there is an increasing demand for exploration of emerging devices with distinct operating principles from conventional

Over the past few decades, the silicon complementary-metal-oxide-semiconductor (CMOS) technology has been greatly scaled down to achieve higher performance, density and lower power consumption. As the device dimension is approaching its fundamental physical limit, there is an increasing demand for exploration of emerging devices with distinct operating principles from conventional CMOS. In recent years, many efforts have been devoted in the research of next-generation emerging non-volatile memory (eNVM) technologies, such as resistive random access memory (RRAM) and phase change memory (PCM), to replace conventional digital memories (e.g. SRAM) for implementation of synapses in large-scale neuromorphic computing systems.

Essentially being compact and “analog”, these eNVM devices in a crossbar array can compute vector-matrix multiplication in parallel, significantly speeding up the machine/deep learning algorithms. However, non-ideal eNVM device and array properties may hamper the learning accuracy. To quantify their impact, the sparse coding algorithm was used as a starting point, where the strategies to remedy the accuracy loss were proposed, and the circuit-level design trade-offs were also analyzed. At architecture level, the parallel “pseudo-crossbar” array to prevent the write disturbance issue was presented. The peripheral circuits to support various parallel array architectures were also designed. One key component is the read circuit that employs the principle of integrate-and-fire neuron model to convert the analog column current to digital output. However, the read circuit is not area-efficient, which was proposed to be replaced with a compact two-terminal oscillation neuron device that exhibits metal-insulator-transition phenomenon.

To facilitate the design exploration, a circuit-level macro simulator “NeuroSim” was developed in C++ to estimate the area, latency, energy and leakage power of various neuromorphic architectures. NeuroSim provides a wide variety of design options at the circuit/device level. NeuroSim can be used alone or as a supporting module to provide circuit-level performance estimation in neural network algorithms. A 2-layer multilayer perceptron (MLP) simulator with integration of NeuroSim was demonstrated to evaluate both the learning accuracy and circuit-level performance metrics for the online learning and offline classification, as well as to study the impact of eNVM reliability issues such as data retention and write endurance on the learning performance.
ContributorsChen, Pai-Yu (Author) / Yu, Shimeng (Thesis advisor) / Cao, Yu (Committee member) / Seo, Jae-Sun (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2018