Matching Items (13)
Filtering by

Clear all filters

171994-Thumbnail Image.png
Description
The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to

The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to average power ratios (PAPR). Design of cellular infrastructure hardware to support these complex signals therefore becomes challenging, as the transmitter’s radio frequency power amplifier (RF PA) needs to remain highly efficient at both peak and backed off power conditions. Additionally, these PAs should exhibit high linearity and support continually increasing bandwidths. Many advanced PA configurations exhibit high efficiency for processing legacy communications signals. Some of the most popular architectures are Envelope Elimination and Restoration (EER), Envelope Tracking (ET), Linear Amplification using Non-linear Component (LINC), Doherty Power Amplifiers (DPA), and Polar Transmitters. Among these techniques, the DPA is the most widely used architecture for base-station applications because of its simple configuration and ability to be linearized using simple digital pre-distortion (DPD) algorithms. To support the cellular infrastructure needs of 5G and beyond, RF PAs, specifically DPA architectures, must be further enhanced to support broader bandwidths as well as smaller form-factors with higher levels of integration. The following four novel works are presented in this dissertation to support RF PA requirements for future cellular infrastructure: 1. A mathematical analysis to analyze the effects of non-linear parasitic capacitance (Cds) on the operation of continuous class-F (CCF) mode power amplifiers and identify their optimum operating range for high power and efficiency. 2. A methodology to incorporate a class-J harmonic trapping network inside the PA package by considering the effect of non-linear Cds, thus reducing the DPA footprint while achieving high RF performance. 3. A novel method of synthesizing the DPA’s output combining network (OCN) to realize an integrated two-stage integrated LDMOS asymmetric DPA. 4. A novel extended back-off efficiency range DPA architecture that engineers the mutual interaction between combining load and peaking off-state impedance. The theory and architecture are verified through a GaN-based DPA design.
ContributorsAhmed, Maruf Newaz (Author) / Kitchen, Jennifer (Thesis advisor) / Aberle, James (Committee member) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2022
190806-Thumbnail Image.png
Description
In 1946 Felix Bloch first demonstrated the phenomenon of nuclear magnetic resonance using continuous-wave signal generation and acquisition. Shortly after in 1966, Richard R. Ernst demonstrated the breakthrough that nuclear magnetic resonance needed to develop into magnetic resonance imaging: the application of Fourier transforms for sensitive pulsed imaging. Upon this

In 1946 Felix Bloch first demonstrated the phenomenon of nuclear magnetic resonance using continuous-wave signal generation and acquisition. Shortly after in 1966, Richard R. Ernst demonstrated the breakthrough that nuclear magnetic resonance needed to develop into magnetic resonance imaging: the application of Fourier transforms for sensitive pulsed imaging. Upon this discovery, the world of research began to develop high power radio amplifiers and fast radio switches for pulsed experimentation. Consequently, continuous-wave imaging placed on the backburner.Although high power pulses are dominant in clinical imaging, there are unique advantages to low power, continuous-wave pulse sequences that transmit and receive signals simultaneously. Primarily, tissues or materials with short T2 time constants can be imaged and the peak radio power required is drastically reduced. The fundamental problem with this lies in its nature; the transmitter leaks a strong leakage signal into the receiver, thus saturating the receiver and the intended nuclear magnetic resonance signal is lost noise. Demonstrated in this dissertation is a multichannel standalone simultaneous transmit and receive (STAR) system with remote user-control that enables continuous- wave full-duplex imaging. STAR calibrates cancellation signals through vector modulators that match the leakage signal of each receiver in amplitude but opposite in phase, therefore destructively interfering the leakage signals. STAR does not require specific imaging coils or console inputs for calibration. It was designed to be general- purpose, therefore integrating into any imaging system. To begin, the user uses an Android tablet to tune STAR to match the Larmor frequency in the bore. Then, the user tells STAR to begin calibration. After self-calibrating, the user may fine-tune the calibration state of the system before enabling a low-power mode for system electronics and imaging may commence. STAR was demonstrated to isolate two receiver coils upwards of 70 dB from the transmit coil and is readily upgradable to enable the use of four receive coils. Some primary concerns of STAR are the removal of transceivers for multichannel operation, digital circuit noise, external noise, calibration speed, upgradability, and the isolation introduced; all of which are addressed in the proceeding thesis.
ContributorsColwell, Zachary Allen (Author) / Sohn, Sung-Min (Thesis advisor) / Trichopoulos, Georgios (Thesis advisor) / Aberle, James (Committee member) / Sadleir, Rosalind (Committee member) / Arizona State University (Publisher)
Created2023
168482-Thumbnail Image.png
Description
Data transmission and reception has become an important aspect in day-to-day communication. With advancement in technology, it dictates the need for accurate data transmission and reception. For this very reason, wireless transceivers are employed in almost every industrial domain for numerous applications. A special concept of distributed transceivers is proven

Data transmission and reception has become an important aspect in day-to-day communication. With advancement in technology, it dictates the need for accurate data transmission and reception. For this very reason, wireless transceivers are employed in almost every industrial domain for numerous applications. A special concept of distributed transceivers is proven to be extremely useful in the latest technologies like Internet of Things. As the name suggests, this is a collaborative communication technique where multiple transceivers are synchronized for faster and much more reliable communication. This imposes a major challenge while designing this kind of a transceiver, as all the transceivers should be operating with carrier synchronization to maintain the proper collaboration. While there are several ways to establish this sync, this thesis emphasizes one of those techniques and tries to resolve the issue in design. The carrier synchronization is achieved using time division synchronization technique. Several challenges in implementing this technique were addressed using various models simulated in MATLAB Simulink and Keysight ADS. An in detail analysis has been performed for all the techniques used for this implementation to provide a diverse perspective.
ContributorsBoorela, Venkata Srilekhya (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios C. (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2021
168299-Thumbnail Image.png
Description
Modern communication systems call for state-of-the-art links that offer almost idealistic performance. This requirement had pushed the technological world to pursue communication in frequency bands that were almost incomprehensible back when the first series of cordless cellphones were invented. These requirements have impacted everything from civilian requirements, space, medical diagnostics

Modern communication systems call for state-of-the-art links that offer almost idealistic performance. This requirement had pushed the technological world to pursue communication in frequency bands that were almost incomprehensible back when the first series of cordless cellphones were invented. These requirements have impacted everything from civilian requirements, space, medical diagnostics to defense technologies and have ushered in a new era of advancements. This work presents a new and novel approach towards improving the conventional phased array systems. The Intelligent Phase Shifter (IPS) offers phase tracking and discrimination solutions that currently plague High-Frequency wireless systems. The proposed system is implemented on (CMOS) process node to better scalability and reduce the overall power dissipated. A tracking system can discern Radio Frequency (RF) Signals’ phase characteristics using a double-balanced mixer. A locally generated reference signal is then matched to the phase of the incoming receiver using a fully modular yet continuous complete 360ᵒ phase shifter that alters the phase of the local reference and matches the phase with that of an incoming RF reference. The tracking is generally two control voltages that carry In-phase and Quadrature-phase information. These control signals offer the capability of controlling similar devices when placed in an array and eliminating any ambiguity that might occur due to in-band interference.
ContributorsLakshminarasimhaiah Rajendra, Yashas (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2021
168340-Thumbnail Image.png
Description
This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna

This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna is modeled and simulated in lossy media. First, the vector wave functions is solved in the fundamental mode. Next the energy flow velocity is plotted to show near-field energy distribution for both TM and TE in air and seawater environment. Finally the power relation in seawater is derived to calculate the source dipole moment and required power. In the second part, the current distribution on the antenna is derived by solving EFIE with moment of methods (MoM). Both triangle and Coifman wavelet (Coiflet) are used as basis and weight functions. Then Input impedance of the antenna is computed and results are compared with traditional sinusoid current distribution assumption. Finally the input impedance of designed antenna is computed and matching network is designed and show resonant at designed frequency. In the third part, GCPW is modeled and measured in E-band. Laboratory measurements are conducted in 75 to 84 GHz. The original system is embedded with error boxes due to misalignment and needed to be de-embedded. Then the measurement data is processed and the results is compared with raw data. In the fourth part, the horn antennas and slotted waveguide array antenna (SWA) are designed for automotive radar in 75GHz to 78GHz. The horn antennas are fabricated using 3D printing of ABS material, and electro-plating with copper. The analytic solution and HFSS simulation show good agreement with measurement.
ContributorsZhou, Sai (Author) / Pan, George (Thesis advisor) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2021
193368-Thumbnail Image.png
Description
In this dissertation, enhanced coherent detection of terahertz (THz) radiation is presented for Silicon integrated circuits (ICs). In general THz receivers implemented in silicon technologies face a challenge due to the high noise figure (NF) of the low noise amplifier (LNA) and low conversion gain of the radio frequency (RF)

In this dissertation, enhanced coherent detection of terahertz (THz) radiation is presented for Silicon integrated circuits (ICs). In general THz receivers implemented in silicon technologies face a challenge due to the high noise figure (NF) of the low noise amplifier (LNA) and low conversion gain of the radio frequency (RF) mixers. Moreover, issues with implementing local oscillators (LOs) further compound these challenges, including power driving mixes, distribution networks, and overall power consumption, particularly for large-scale arrays. To address these inherent obstacles, two notable cases of enhancing THz receiver performance are presented. In the Sideband Separation Receiver (SSR) for space-borne applications is introduced. Implemented in SiGe BiCMOS technology this broadband SSR boasts a high Image Rejection Ratio (IRR) exceeding 20 dB across 220 – 320 GHz. Employing a modified Weaver architecture, optimized for simultaneous spectral line observation, it utilizes an I/Q double down-conversion, pushing the technological boundaries of silicon and enabling large-scale focal plane array (FPA) deployment in space. Notably, the use of a sub-harmonic down-conversion mixer (SHM) significantly reduces LO power generation challenges, enhancing scalability while maintaining minimal NF. In the 4x4 FPA active THz imager, a dual-polarized patch antenna operating at 420 GHz utilizes orthogonal polarization for RF and LO signals, coupled with a coherent homodyne power detector. Realized in 0.13µm SiGe HBT technology, the power detector is co-designing with the antenna to ensure minimal crosstalk and achieving -30dB cross-polarization isolation. Illumination of the LO enhances power detector performance without on-chip routing complexities, enabling scalability to 1K pixel THz imagers. Each pixel achieves a Noise-Equivalent Power (NEP) of 1 pW/√Hz at 420 GHz, and integration with a readout and digital filter ensures high dynamic range. Furthermore, this study explores radiation hardening techniques to mitigate single-event effects (SEEs) in high-frequency receivers operating in space. Leveraging a W-band receiver in 90 nm SiGe BiCMOS technology, matching considerations and diverse modes of operation are employed to reduce SEE susceptibility. Transient current pulse modeling, validated through TCAD simulations, demonstrates the effectiveness of proposed techniques in substantially mitigating SETs within the proposed radiation-hardened-by-design (RHBD) receiver front-end.
ContributorsAl Seragi, Ebrahim (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2024
187372-Thumbnail Image.png
Description
I present a trade-study of methods for a 1-port vacuum cryogenic in-situ calibration of a vector network analyzer. The three main methods I investigated in this work were: calibration using a commercial off the shelf latching electro-mechanical six way switch, a custom switch board, and a flexible multi channel stripline

I present a trade-study of methods for a 1-port vacuum cryogenic in-situ calibration of a vector network analyzer. The three main methods I investigated in this work were: calibration using a commercial off the shelf latching electro-mechanical six way switch, a custom switch board, and a flexible multi channel stripline based printed circuit board. The test procedure was developed for use in a ground based closed-cycle cryogenic test bench to measure the reflection coefficient of a single port connectorized device under test. The device was installed in the cryogenic system alongside calibration standards. The goal of the trade study was to find which method could be used to accomplish calibration and device measurement in a single thermal cycle. Four cycles were required for industry standard open-short-load device calibration. Room temperature measurements were done with all three calibration schemes but ultimately only the single pole six throw switch proved effective enough for further testing. The cryogenic testing was carried out on an arbitrary device at ∼ 3K temperature, over a 6 GHz bandwidth. The final objective was to develop a setup and procedure for measuring the frequency and temperature dependent complex impedance of superconducting devices such as hot electron bolometer mixers, which are used for down converting the signal in the IF chain of astronomy instruments. Characterization of superconducting devices while they are at their operating temperature is challenging using traditional calibration methods. This commercial alternative is less expensive and more efficient in terms of thermal cycles and set up because it can be installed in a wide variety of cyrogenic systems.
ContributorsNeric, Marko (Author) / Trichopoulos, Georgios (Thesis advisor) / Groppi, Chris (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2023
187661-Thumbnail Image.png
Description
Antenna arrays are widely used in wireless communication, radar, remote sensing, and other fields. Compared to traditional linear antenna arrays, novel nonlinear antenna arrays have fascinating advantages in terms of structural simplicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation explores a novel design of

Antenna arrays are widely used in wireless communication, radar, remote sensing, and other fields. Compared to traditional linear antenna arrays, novel nonlinear antenna arrays have fascinating advantages in terms of structural simplicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation explores a novel design of a phased array antenna with an augmented scanning range, aiming to establish a clear connection between mathematical principles and practical circuitry. To achieve this goal, the Van der Pol (VDP) model is applied to a single-transistor oscillator to obtain the isolated limit cycle. The coupled oscillators are then integrated into a 1 times 7 coupled phased array, using the Keysight PathWave Advanced Design System (ADS) for tuning and optimization. The VDP model is used for analytic study of bifurcation, quasi-sinusoidal oscillation, quasi-periodic chaos, and oscillator death, while ADS schematics guide engineering implementation and physical fabrication. The coupled oscillators drive cavity-backed antennas, forming a one-dimensional scanning antenna array of 1 times 7. The approaches for increasing the scanning range performance are discussed.
ContributorsZhang, Kaiyue (Author) / Pan, George (Thesis advisor) / Yu, Hongbin (Committee member) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Arizona State University (Publisher)
Created2023
193434-Thumbnail Image.png
Description
Dynamic metasurface antennas (DMAs) consist of waveguides patterned with numerous metamaterial radiators loaded with switchable components (such as varactors). Byapplying different direct current (DC) signals to each element, DMAs can generate a multitude of radiation patterns ranging from directive beams useful for wireless communication to spatially diverse ones useful for

Dynamic metasurface antennas (DMAs) consist of waveguides patterned with numerous metamaterial radiators loaded with switchable components (such as varactors). Byapplying different direct current (DC) signals to each element, DMAs can generate a multitude of radiation patterns ranging from directive beams useful for wireless communication to spatially diverse ones useful for computational imaging and sensing. In this thesis, DMAs are extended to conformal configurations. Using full-wave simulation, it is shown that a conformal DMA can detect the angle of the incident signal over the horizon using a two port device at a single frequency. The design and operation of the conformal DMA will be detailed. In addition, it shows that DMAs can be implemented using a single substrate layer, significantly simplifying its structure compared to conventional multiple-layer ones. Using full-wave simulation, this thesis demonstrates a mechanism to bring DC signal to metamaterial elements without requiring an extra layer. This design can be instrumental in implementing the conformal DMA in the future AoA detection was achieved over unique diode distributions of the conformal DCMA at a 10-degree resolution. Investigations into additive noise of the simulated measured data as well as the minimum amount of diode distributions to accurately detect AoA were conducted and documented within this thesis. The single-layer DMA yielded both directive and complex patterns that allow for many potential applications. With success in bringing the DC signal to the metamaterial elements on a single-layer, further advances in conformal DMAs can be achieved.
ContributorsWilliams, Travis Hugh (Author) / Imani, Seyedmohammadreza F (Thesis advisor) / Aberle, James (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2024
193006-Thumbnail Image.png
Description
Recent advancements in communication standards, such as 5G demand transmitter hardware to support high data rates with high energy efficiency. With the revolution of communication standards, modulation schemes have become more complex and require high peak-to-average (PAPR) signals. In wireless transceiver hardware, the power amplifier (PA) consumes most of the

Recent advancements in communication standards, such as 5G demand transmitter hardware to support high data rates with high energy efficiency. With the revolution of communication standards, modulation schemes have become more complex and require high peak-to-average (PAPR) signals. In wireless transceiver hardware, the power amplifier (PA) consumes most of the transceiver’s DC power and is typically the bottleneck for transmitter linearity. Therefore, the transmitter’s performance directly depends on the PA. To support high PAPR signals, the PA must operate efficiently at its saturated and backoff output power. Maintaining high efficiency at both peak and backoff output power is challenging. One effective technique for addressing this problem is load modulation. Some of the prominent load-modulated PA architectures are outphasing PAs, load-modulated balanced amplifiers (LMBA), envelope elimination and restoration (EER), envelope tracking (ET), Doherty power amplifiers (DPA), and polar transmitters. Amongst them, the DPA is the most popular for infrastructure applications due to its simpler architecture compared to other techniques and linearizability with digital pre-distortion (DPD). Another crucial characteristic of progressing communication standards is wide signal bandwidths. High-efficiency power amplifiers like class J/F/F-1 and load-modulated PAs like the DPA exhibit narrowband performance because the amplifiers require precise output impedance terminations. Therefore, it is equally essential to develop adaptable PA solutions to process radio frequency (RF) signals with wide bandwidths. To support modern and future cellular infrastructure, RF PAs need to be innovated to increase the backoff power efficiency by two times or more and support ten times or more wider bandwidths than current state-of-the-art PAs. This work presents five RF PA analyses and implementations to support future wireless communications transmitter hardware. Chapter 2 presents an optimized output-matching network analysis and design to achieve extended output power backoff of the DPA. Chapters 3 and 4 unveil two bandwidth enhancement techniques for the DPA while maintaining extended output power backoff. Chapter 5 exhibits a dual-band hybrid mode PA design targeted for wideband applications. Chapter 6 presents a built-in self-test circuit integrated into a PA for output impedance monitoring. This can alleviate the PA performance degradation due to the variation in the PA's output load over frequency, process, and aging. All RF PAs in this dissertation are implemented using Gallium Nitride (GaN)-based high electron mobility transistors (HEMT), and the realized designs validate the proposed PAs' theories/architectures.
ContributorsRoychowdhury, Debatrayee (Author) / Kitchen, Jennifer (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2024