Matching Items (60)
Filtering by

Clear all filters

157980-Thumbnail Image.png
Description
The emergence of perovskite and practical efficiency limit to silicon solar cells has opened door for perovskite and silicon based tandems with the possibility to achieve >30% efficiency. However, there are material and optical challenges that have to be overcome for the success of these tandems. In this work the

The emergence of perovskite and practical efficiency limit to silicon solar cells has opened door for perovskite and silicon based tandems with the possibility to achieve >30% efficiency. However, there are material and optical challenges that have to be overcome for the success of these tandems. In this work the aim is to understand and improve the light management issues in silicon and perovskite based tandems through comprehensive optical modeling and simulation of current state of the art tandems and by characterizing the optical properties of new top and bottom cell materials. Moreover, to propose practical solutions to mitigate some of the optical losses.

Highest efficiency single-junction silicon and bottom silicon sub-cell in silicon based tandems employ monocrystalline silicon wafer textured with random pyramids. Therefore, the light trapping performance of random pyramids in silicon solar cells is established. An accurate three-dimensional height map of random pyramids is captured and ray-traced to record the angular distribution of light inside the wafer which shows random pyramids trap light as well as Lambertian scatterer.

Second, the problem of front-surface reflectance common to all modules, planar solar cells and to silicon and perovskite based tandems is dealt. A nano-imprint lithography procedure is developed to fabricate polydimethylsiloxane (PDMS) scattering layer carrying random pyramids that effectively reduces the reflectance. Results show it increased the efficiency of planar semi-transparent perovskite solar cell by 10.6% relative.

Next a detailed assessment of light-management in practical two-terminal perovskite/silicon and perovskite/perovskite tandems is performed to quantify reflectance, parasitic and light-trapping losses. For this first a methodology based on spectroscopic ellipsometry is developed to characterize new absorber materials employed in tandems. Characterized materials include wide-bandgap (CH3NH3I3, CsyFA1-yPb(BrxI1-x)3) and low-bandgap (Cs0.05FA0.5MA0.45(Pb0.5Sn0.5)I3) perovskites and wide-bandgap CdTe alloys (CdZnSeTe). Using this information rigorous optical modeling of two-terminal perovskite/silicon and perovskite/perovskite tandems with varying light management schemes is performed. Thus providing a guideline for further development.
ContributorsManzoor, Salman (Author) / Holman, Zachary C (Thesis advisor) / King, Richard (Committee member) / Goryll, Michael (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2019
157838-Thumbnail Image.png
Description
Semiconductor devices often face reliability issues due to their operational con-

ditions causing performance degradation over time. One of the root causes of such

degradation is due to point defect dynamics and time dependent changes in their

chemical nature. Previously developed Unified Solver was successful in explaining

the copper (Cu) metastability issues in cadmium

Semiconductor devices often face reliability issues due to their operational con-

ditions causing performance degradation over time. One of the root causes of such

degradation is due to point defect dynamics and time dependent changes in their

chemical nature. Previously developed Unified Solver was successful in explaining

the copper (Cu) metastability issues in cadmium telluride (CdTe) solar cells. The

point defect formalism employed there could not be extended to chlorine or arsenic

due to numerical instabilities with the dopant chemical reactions. To overcome these

shortcomings, an advanced version of the Unified Solver called PVRD-FASP tool was

developed. This dissertation presents details about PVRD-FASP tool, the theoretical

framework for point defect chemical formalism, challenges faced with numerical al-

gorithms, improvements for the user interface, application and/or validation of the

tool with carefully chosen simulations, and open source availability of the tool for the

scientific community.

Treating point defects and charge carriers on an equal footing in the new formalism

allows to incorporate chemical reaction rate term as generation-recombination(G-R)

term in continuity equation. Due to the stiff differential equations involved, a reaction

solver based on forward Euler method with Newton step is proposed in this work.

The Jacobian required for Newton step is analytically calculated in an elegant way

improving speed, stability and accuracy of the tool. A novel non-linear correction

scheme is proposed and implemented to resolve charge conservation issue.

The proposed formalism is validated in 0-D with time evolution of free carriers

simulation and with doping limits of Cu in CdTe simulation. Excellent agreement of

light JV curves calculated with PVRD-FASP and Silvaco Atlas tool for a 1-D CdTe

solar cell validates reaction formalism and tool accuracy. A closer match with the Cu

SIMS profiles of Cu activated CdTe samples at four different anneal recipes to the

simulation results show practical applicability. A 1D simulation of full stack CdTe

device with Cu activation at 350C 3min anneal recipe and light JV curve simulation

demonstrates the tool capabilities in performing process and device simulations. CdTe

device simulation for understanding differences between traps and recombination

centers in grain boundaries demonstrate 2D capabilities.
ContributorsShaik, Abdul Rawoof (Author) / Vasileska, Dragica (Thesis advisor) / Ringhofer, Christian (Committee member) / Sankin, Igor (Committee member) / Brinkman, Daniel (Committee member) / Goodnick, Stephen (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2019
158825-Thumbnail Image.png
Description
BioMEMS has the potential to provide many future tools for life sciences, combined with microfabrication technologies and biomaterials. Especially due to the recent corona 19 epidemic, interest in BioMEMS technology has increased significantly, and the related research has also grown significantly. The field with the highest demand for BioMEMS devices

BioMEMS has the potential to provide many future tools for life sciences, combined with microfabrication technologies and biomaterials. Especially due to the recent corona 19 epidemic, interest in BioMEMS technology has increased significantly, and the related research has also grown significantly. The field with the highest demand for BioMEMS devices is in the medical field. In particular, the implantable device field is the largest sector where cutting-edge BioMEMS technology is applied along with nanotechnology, artificial intelligence, genetic engineering, etc. However, implantable devices used for brain diseases are still very limited because unlike other parts of human organs, the brain is still unknow area which cannot be completely replaceable.To date, the most commercially used, almost only, implantable device for the brain is a shunt system for the treatment of hydrocephalus. The current cerebrospinal fluid (CSF) shunt treatment yields high failure rates: ~40% within first 2 years and 98% within 10 years. These failures lead to high hospital admission rates and repeated invasive surgical procedures, along with reduced quality of life. New treatments are needed to improve the disease burden associated with hydrocephalus. In this research, the proposed catheter-free, completely-passive miniaturized valve is designed to alleviate hydrocephalus at the originating site of the disorder and diminish failure mechanisms associated with current treatment methods. The valve is composed of hydrogel diaphragm structure and polymer or glass outer frame which are 100% bio-compatible material. The valve aims to be implanted between the sub-arachnoid space and the superior sagittal sinus to regulate the CSF flow substituting for the obstructed arachnoid granulations.
A cardiac pacemaker is one of the longest and most widely used implantable devices and the wireless technology is the most widely used with it for easy acquisition of vital signs and rapid disease diagnosis without clinical surgery. But the conventional pacemakers with some wireless technology face some essential complications associated with finite battery life, ultra-vein pacing leads, and risk of infection from device pockets and leads. To solve these problems, wireless cardiac pacemaker operating in fully-passive modality is proposed and demonstrates the promising potential by realizing a prototype and functional evaluating.
ContributorsLee, Seunghyun (Author) / Christen, Jennifer (Thesis advisor) / Goryll, Michael (Committee member) / Nikkhah, Mehdi (Committee member) / Sohn, SungMin (Committee member) / Arizona State University (Publisher)
Created2020
158814-Thumbnail Image.png
Description
The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high power consumption, and the need to replace batteries. This thesis aims to alleviate these issues by presenting a series of

The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high power consumption, and the need to replace batteries. This thesis aims to alleviate these issues by presenting a series of wireless fully-passive sensors for the acquisition of biosignals: including neuropotential, biopotential, intracranial pressure (ICP), in addition to a stimulator for the pacing of engineered cardiac cells. In contrast to existing wireless biosignal recording systems, the proposed wireless sensors do not contain batteries or high-power electronics such as amplifiers or digital circuitries. Instead, the RFID tag-like sensors utilize a unique radiofrequency (RF) backscattering mechanism to enable wireless and battery-free telemetry of biosignals with extremely low power consumption. This characteristic minimizes the risk of heat-induced tissue damage and avoids the need to use any transcranial/transcutaneous wires, and thus significantly enhances long-term safety and reliability. For neuropotential recording, a small (9mm x 8mm), biocompatible, and flexible wireless recorder is developed and verified by in vivo acquisition of two types of neural signals, the somatosensory evoked potential (SSEP) and interictal epileptic discharges (IEDs). For wireless multichannel neural recording, a novel time-multiplexed multichannel recording method based on an inductor-capacitor delay circuit is presented and tested, realizing simultaneous wireless recording from 11 channels in a completely passive manner. For biopotential recording, a wearable and flexible wireless sensor is developed, achieving real-time wireless acquisition of ECG, EMG, and EOG signals. For ICP monitoring, a very small (5mm x 4mm) wireless ICP sensor is designed and verified both in vitro through a benchtop setup and in vivo through real-time ICP recording in rats. Finally, for cardiac cell stimulation, a flexible wireless passive stimulator, capable of delivering stimulation current as high as 60 mA, is developed, demonstrating successful control over the contraction of engineered cardiac cells. The studies conducted in this thesis provide information and guidance for future translation of wireless fully-passive telemetry methods into actual clinical application, especially in the field of implantable and wearable electronics.
ContributorsLiu, Shiyi (Author) / Christen, Jennifer (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Phillips, Stephen (Committee member) / Cao, Yu (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2020
158748-Thumbnail Image.png
Description
Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively less value in clinical application. In this dissertation, a wireless

Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively less value in clinical application. In this dissertation, a wireless wearable sensor on a paper substrate is developed to continuously characterize respiratory behavior and deliver clinically relevant parameters, contributing to asthma control. Based on the anatomical analysis and experimental results, the optimum site for the wireless wearable sensor is on the midway of the xiphoid process and the costal margin, corresponding to the abdomen-apposed rib cage. At the wearing site, the linear strain change during respiration is measured and converted to lung volume by the wireless wearable sensor utilizing a distance-elapsed ultrasound. An on-board low-power Bluetooth module transmits the temporal lung volume change to a smartphone, where a custom-programmed app computes to show the clinically relevant parameters, such as forced vital capacity (FVC) and forced expiratory volume delivered in the first second (FEV1) and the FEV1/FVC ratio. Enhanced by a simple, yet effective machine-learning algorithm, a system consisting of two wireless wearable sensors accurately extracts respiratory features and classifies the respiratory behavior within four postures among different subjects, demonstrating that the respiratory behaviors are individual- and posture-dependent contributing to monitoring the posture-related respiratory diseases. The continuous and accurate monitoring of respiratory behaviors can track the respiratory disorders and diseases' progression for timely and objective approaches for control and management.
ContributorsChen, Ang (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Allee, David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2020
158102-Thumbnail Image.png
Description
Programmable Metallization Cell (PMC) devices are, in essence, redox-based

solid-state resistive switching devices that rely on ion transport through a solid electrolyte (SE) layer from anode to cathode. Analysis and modeling of the effect of different fabrication and processing parameter/conditions on PMC devices are crucial for future electronics. Furthermore, this work

Programmable Metallization Cell (PMC) devices are, in essence, redox-based

solid-state resistive switching devices that rely on ion transport through a solid electrolyte (SE) layer from anode to cathode. Analysis and modeling of the effect of different fabrication and processing parameter/conditions on PMC devices are crucial for future electronics. Furthermore, this work is even more significant for devices utilizing back-end- of-line (BEOL) compatible materials such as Cu, W, their oxides and SiOx as these devices offer cost effectiveness thanks to their inherent foundry-ready nature. In this dissertation, effect of annealing conditions and cathode material on the performance of Cu-SiOx vertical devices is investigated which shows that W-based devices have much lower forming voltage and initial resistance values. Also, higher annealing temperatures first lead to an increase in forming voltage from 400 °C to 500 °C, then a drastic decrease at 550 °C due to Cu island formation at the Cu/SiOx interface. Next, the characterization and modeling of the bilayer Cu2O/Cu-WO3 obtained by annealing the deposited Cu/WO3 stacks in air at BEOL-compatible temperatures is presented that display unique characteristics for lateral PMC devices. First, thin film oxidation kinetics of Cu is studied which show a parabolic relationship with annealing time and an activation energy of 0.70 eV. Grown Cu2O shows a cauliflower-like morphology where feature size on the surface increase with annealing time and temperature. Then, diffusion kinetics of Cu in WO3 is examined where the activation energy of diffusion of Cu into WO3 is calculated to be 0.74 eV. Cu was found to form clusters in the WO3 host which was revealed by imaging. Moreover, using the oxidation and diffusion analyses, a Matlab model is established for modeling the bilayer for process and annealing-condition optimization. The model is built to produce the resulting Cu2O thickness and Cu concentration in Cu-WO3. Additionally, material characterization, preliminary electrical results along with modeling of lateral PMC devices utilizing the bilayer is also demonstrated. By tuning the process parameters such as deposited Cu thickness and annealing conditions, a low-resistive Cu2O layer was achieved which dramatically enhanced the electrodeposition growth rate for lateral PMC devices.
ContributorsBalaban, Mehmet Bugra (Author) / Kozicki, Michael N (Thesis advisor) / Barnaby, Hugh J (Committee member) / Goryll, Michael (Committee member, Committee member) / Arizona State University (Publisher)
Created2020
161642-Thumbnail Image.png
Description
Unlike conventional solar cells, modern high efficiency passivated contacts solar cells like silicon heterojunction (SHJ) cells have excellent surface passivation and use high bulk lifetime wafers which increase the operating injection level of these devices. These solar cell architectures can benefit from having lower doped substrates, with undoped solar cells

Unlike conventional solar cells, modern high efficiency passivated contacts solar cells like silicon heterojunction (SHJ) cells have excellent surface passivation and use high bulk lifetime wafers which increase the operating injection level of these devices. These solar cell architectures can benefit from having lower doped substrates, with undoped solar cells becoming an attractive option. There has been very limited literature on high bulk resistivity substrates (>>10 Ωcm). This thesis work provides a comprehensive assessment of the potential of high resistivity/undoped substrates for high performance and more reliable silicon solar cells by demonstrating the results from modeling as well as characterization of SHJ solar cells fabricated with high resistivity/undoped substrates under real-world illumination and temperature conditions that the cells/modules experience in the field. In this work, the results from the analytical model demonstrated the effects of various defects, variation in doping and temperature on the performance of silicon solar cells. Experimentally, SHJ cells with bulk resistivities in the range of 1 Ωcm to >15k Ωcm were fabricated, and cell efficiencies over 20% were measured at standard testing conditions (STC) across the entire range of bulk resistivities. The illumination response (0.1-1 sun) and temperature coefficients (25-90 °C) were shown to be independent of the bulk resistivity. No light induced degradation was observed in the n-type SHJ cells of all resistivity ranges whereas high resistivity p-type SHJ cells showed less degradation compared to that of commercial resistivity range (<10 Ωcm). Very high reverse breakdown voltages (over 1 kV) were demonstrated for SHJ cells fabricated with high resistivity wafers. Using simulation, the importance of having cells in the modules with breakdown voltage higher than the series string voltage for safe and reliable operation of the photovoltaic (PV) system was highlighted. The ingot yield can be improved by moving towards high resistivity ranges to manufacture high efficiency reliable solar cells by utilizing the entire ingot and eliminating the need to adhere to narrow resistivity range. Thus, the novel findings from this work can have profound impact on ingot and module manufacturing resulting in significant cost savings as well as improvement in the system reliability.
ContributorsSrinivasa, Apoorva (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / King, Richard (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2021
161882-Thumbnail Image.png
Description
Crystalline silicon covers more than 85% of the global photovoltaics industry and has sustained a nearly 30% year-over-year growth rate. Continued cost and capital expenditure (CAPEX) reductions are needed to sustain this growth. Using thin silicon wafers well below the current industry standard of 160 µm can reduce manufacturing cost,

Crystalline silicon covers more than 85% of the global photovoltaics industry and has sustained a nearly 30% year-over-year growth rate. Continued cost and capital expenditure (CAPEX) reductions are needed to sustain this growth. Using thin silicon wafers well below the current industry standard of 160 µm can reduce manufacturing cost, CAPEX, and levelized cost of electricity. Additionally, thinner wafers enable more flexible and lighter module designs, making them more compelling in market segments like building-integrated photovoltaics, portable power, aerospace, and automotive industries. Advanced architectures and superior surface passivation schemes are needed to enable the use of very thin silicon wafers. Silicon heterojunction (SHJ) and SHJ with interdigitated back contact solar cells have demonstrated open-circuit voltages surpassing 720 mV and the potential to surpass 25% conversion efficiency. These factors have led to an increasing interest in exploring SHJ solar cells on thin wafers. In this work, the passivation capability of the thin intrinsic hydrogenated amorphous silicon layer is improved by controlling the deposition temperature and the silane-to-hydrogen dilution ratio. An effective way to parametrize surface recombination is by using surface saturation current density and a very low surface saturation density is achieved on textured wafers for wafer thicknesses ranging between 40 and 180 µm which is an order of magnitude lesser compared to the prevalent industry standards. Implied open-circuit voltages over 760 mV were accomplished on SHJ structures deposited on n-type silicon wafers with thicknesses below 50 µm. An analytical model is also described for a better understanding of the variation of the recombination fractions for varying substrate thicknesses. The potential of using very thin wafers is also established by manufacturing SHJ solar cells, using industrially pertinent processing steps, on 40 µm thin standalone wafers while achieving maximum efficiency of 20.7%. It is also demonstrated that 40 µm thin SHJ solar cells can be manufactured using these processes on large areas. An analysis of the percentage contribution of current, voltage, and resistive losses are also characterized for the SHJ devices fabricated in this work for varying substrate thicknesses.
ContributorsBalaji, Pradeep (Author) / Bowden, Stuart (Thesis advisor) / Alford, Terry (Thesis advisor) / Goryll, Michael (Committee member) / Augusto, Andre (Committee member) / Arizona State University (Publisher)
Created2021
153773-Thumbnail Image.png
Description
Engineered nanoporous substrates made using materials such as silicon nitride or silica have been demonstrated to work as particle counters or as hosts for nano-lipid bilayer membrane formation. These mechanically fabricated porous structures have thicknesses of several hundred nanometers up to several micrometers to ensure mechanical stability of the membrane.

Engineered nanoporous substrates made using materials such as silicon nitride or silica have been demonstrated to work as particle counters or as hosts for nano-lipid bilayer membrane formation. These mechanically fabricated porous structures have thicknesses of several hundred nanometers up to several micrometers to ensure mechanical stability of the membrane. However, it is desirable to have a three-dimensional structure to ensure increased mechanical stability. In this study, circular silica shells used from Coscinodiscus wailesii, a species of diatoms (unicellular marine algae) were immobilized on a silicon chip with a micrometer-sized aperture using a UV curable polyurethane adhesive. The current conducted by a single nanopore of 40 nm diameter and 50 nm length, during the translocation of a 27 nm polystyrene sphere was simulated using COMSOL multiphysics and tested experimentally. The current conducted by a single 40 nm diameter nanopore of the diatom shell during the translocation of a 27 nm polystyrene sphere was simulated using COMSOL Multiphysics (28.36 pA) and was compared to the experimental measurement (28.69 pA) and Coulter Counting theory (29.95 pA).In addition, a mobility of 1.11 x 10-8 m2s-1V-1 for the 27 nm polystyrene spheres was used to convert the simulated current from spatial dependence to time dependence.

To achieve a sensing diameter of 1-2 nanometers, the diatom shells were used as substrates to perform ion-channel reconstitution experiments. The immobilized diatom shell was functionalized using silane chemistry and lipid bilayer membranes were formed. Functionalization of the diatom shell surface improves bilayer formation probability from 1 out of 10 to 10 out of 10 as monitored by impedance spectroscopy. Self-insertion of outer membrane protein OmpF of E.Coli into the lipid membranes could be confirmed using single channel recordings, indicating that nano-BLMs had formed which allow for fully functional porin activity. The results indicate that biogenic silica nanoporous substrates can be simulated using a simplified two dimensional geometry to predict the current when a nanoparticle translocates through a single aperture. With their tiered three-dimensional structure, diatom shells can be used in to form nano-lipid bilayer membranes and can be used in ion-channel reconstitution experiments similar to synthetic nanoporous membranes.
ContributorsRamakrishnan, Shankar (Author) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Dey, Sandwip (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2015
155176-Thumbnail Image.png
Description
A Microbial fuel cell (MFC) is a bio-inspired carbon-neutral, renewable electrochemical converter to extract electricity from catabolic reaction of micro-organisms. It is a promising technology capable of directly converting the abundant biomass on the planet into electricity and potentially alleviate the emerging global warming and energy crisis. The current and

A Microbial fuel cell (MFC) is a bio-inspired carbon-neutral, renewable electrochemical converter to extract electricity from catabolic reaction of micro-organisms. It is a promising technology capable of directly converting the abundant biomass on the planet into electricity and potentially alleviate the emerging global warming and energy crisis. The current and power density of MFCs are low compared with conventional energy conversion techniques. Since its debut in 2002, many studies have been performed by adopting a variety of new configurations and structures to improve the power density. The reported maximum areal and volumetric power densities range from 19 mW/m2 to 1.57 W/m2 and from 6.3 W/m3 to 392 W/m3, respectively, which are still low compared with conventional energy conversion techniques. In this dissertation, the impact of scaling effect on the performance of MFCs are investigated, and it is found that by scaling down the characteristic length of MFCs, the surface area to volume ratio increases and the current and power density improves. As a result, a miniaturized MFC fabricated by Micro-Electro-Mechanical System(MEMS) technology with gold anode is presented in this dissertation, which demonstrate a high power density of 3300 W/m3. The performance of the MEMS MFC is further improved by adopting anodes with higher surface area to volume ratio, such as carbon nanotube (CNT) and graphene based anodes, and the maximum power density is further improved to a record high power density of 11220 W/m3. A novel supercapacitor by regulating the respiration of the bacteria is also presented, and a high power density of 531.2 A/m2 (1,060,000 A/m3) and 197.5 W/m2 (395,000 W/m3), respectively, are marked, which are one to two orders of magnitude higher than any previously reported microbial electrochemical techniques.
ContributorsRen, Hao (Author) / Chae, Junseok (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Phillips, Stephen (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016