Matching Items (20)
Filtering by

Clear all filters

135896-Thumbnail Image.png
Description
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only

The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
ContributorsMartin, Heather Catrina (Author) / Bowden, Stuart (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
137463-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C.
ContributorsDenke, Steven Michael (Author) / Roedel, Ron (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
135725-Thumbnail Image.png
Description
A distributed sensor network (DSN) is a set of spatially scattered intelligent sensors designed to obtain data across an environment. DSNs are becoming a standard architecture for collecting data over a large area. We need registration of nodal data across the network in order to properly exploit having multiple sensors.

A distributed sensor network (DSN) is a set of spatially scattered intelligent sensors designed to obtain data across an environment. DSNs are becoming a standard architecture for collecting data over a large area. We need registration of nodal data across the network in order to properly exploit having multiple sensors. One major problem worth investigating is ensuring the integrity of the data received, such as time synchronization. Consider a group of match filter sensors. Each sensor is collecting the same data, and comparing the data collected to a known signal. In an ideal world, each sensor would be able to collect the data without offsets or noise in the system. Two models can be followed from this. First, each sensor could make a decision on its own, and then the decisions could be collected at a ``fusion center'' which could then decide if the signal is present or not. The fusion center can then decide if the signal is present or not based on the number true-or-false decisions that each sensor has made. Alternatively, each sensor could relay the data that it collects to the fusion center, and it could then make a decision based on all of the data that it then receives. Since the fusion center would have more information to base its decision on in the latter case--as opposed to the former case where it only receives a true or false from each sensor--one would expect the latter model to perform better. In fact, this would be the gold standard for detection across a DSN. However, there is random noise in the world that causes corruption of data collection, especially among sensors in a DSN. Each sensor does not collect the data in the exact same way or with the same precision. We classify these imperfections in data collections as offsets, specifically the offset present in the data collected by one sensor with respect to the rest of the sensors in the network. Therefore, reconsider the two models for a DSN described above. We can naively implement either of these models for data collection. Alternatively, we can attempt to estimate the offsets between the sensors and compensate. One could see how it would be expected that estimating the offsets within the DSN would provide better overall results than not finding estimators. This thesis will be structured as follows. First, there will be an extensive investigation into detection theory and the impact that different types of offsets have on sensor networks. Following the theory, an algorithm for estimating the data offsets will be proposed correct for the offsets. Next, we will look at Monte Carlo simulation results to see the impact on sensor performance of data offsets in comparison to a sensor network without offsets present. The algorithm is then implemented, and further experiments will demonstrate sensor performance with offset detection.
ContributorsMonardo, Vincent James (Author) / Cochran, Douglas (Thesis director) / Kierstead, Hal (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132515-Thumbnail Image.png
Description
This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.
ContributorsWood, Jacob Cannon (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132421-Thumbnail Image.png
Description
The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how

The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how a model can be developed to predict the mechanical failure of vacuum pumps.
ContributorsHalver, Grant (Author) / Taylor, Tom (Thesis director) / Konstantinos, Tsakalis (Committee member) / Fricks, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171994-Thumbnail Image.png
Description
The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to

The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to average power ratios (PAPR). Design of cellular infrastructure hardware to support these complex signals therefore becomes challenging, as the transmitter’s radio frequency power amplifier (RF PA) needs to remain highly efficient at both peak and backed off power conditions. Additionally, these PAs should exhibit high linearity and support continually increasing bandwidths. Many advanced PA configurations exhibit high efficiency for processing legacy communications signals. Some of the most popular architectures are Envelope Elimination and Restoration (EER), Envelope Tracking (ET), Linear Amplification using Non-linear Component (LINC), Doherty Power Amplifiers (DPA), and Polar Transmitters. Among these techniques, the DPA is the most widely used architecture for base-station applications because of its simple configuration and ability to be linearized using simple digital pre-distortion (DPD) algorithms. To support the cellular infrastructure needs of 5G and beyond, RF PAs, specifically DPA architectures, must be further enhanced to support broader bandwidths as well as smaller form-factors with higher levels of integration. The following four novel works are presented in this dissertation to support RF PA requirements for future cellular infrastructure: 1. A mathematical analysis to analyze the effects of non-linear parasitic capacitance (Cds) on the operation of continuous class-F (CCF) mode power amplifiers and identify their optimum operating range for high power and efficiency. 2. A methodology to incorporate a class-J harmonic trapping network inside the PA package by considering the effect of non-linear Cds, thus reducing the DPA footprint while achieving high RF performance. 3. A novel method of synthesizing the DPA’s output combining network (OCN) to realize an integrated two-stage integrated LDMOS asymmetric DPA. 4. A novel extended back-off efficiency range DPA architecture that engineers the mutual interaction between combining load and peaking off-state impedance. The theory and architecture are verified through a GaN-based DPA design.
ContributorsAhmed, Maruf Newaz (Author) / Kitchen, Jennifer (Thesis advisor) / Aberle, James (Committee member) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2022
Description
This research explores the potential use of microwave energy to detect various substances in water, with a focus on water quality assessment and pathogen detection applications. There are many non-thermal effects of microwaves on microorganisms and their resonant frequencies could be used to identify and possibly destroy harmful pathogens, such

This research explores the potential use of microwave energy to detect various substances in water, with a focus on water quality assessment and pathogen detection applications. There are many non-thermal effects of microwaves on microorganisms and their resonant frequencies could be used to identify and possibly destroy harmful pathogens, such as bacteria and viruses, without heating the water. A wide range of materials, including living organisms like Daphnia and Moina, plants, sand, plastic, and salt, were subjected to microwave measurements to assess their influence on the transmission (S21) measurements. The measurements of the living organisms did not display distinctive resonant frequencies and variations in water volume may be the source of the small measurement differences. Conversely, sand and plastic pellets affected the measurements differently, with their arrangement within the test tube emerging as a significant factor. This study also explores the impact of salinity on measurements, revealing a clear pattern that can be modeled as a series RLC resonator. Although unique resonant frequencies for the tested organisms were not identified, the presented system demonstrates the potential for detecting contaminants based on variations in measurements. Future research may extend this work to include a broader array of organisms and enhance measurement precision.
ContributorsChild, Carson (Author) / Aberle, James (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-12
190806-Thumbnail Image.png
Description
In 1946 Felix Bloch first demonstrated the phenomenon of nuclear magnetic resonance using continuous-wave signal generation and acquisition. Shortly after in 1966, Richard R. Ernst demonstrated the breakthrough that nuclear magnetic resonance needed to develop into magnetic resonance imaging: the application of Fourier transforms for sensitive pulsed imaging. Upon this

In 1946 Felix Bloch first demonstrated the phenomenon of nuclear magnetic resonance using continuous-wave signal generation and acquisition. Shortly after in 1966, Richard R. Ernst demonstrated the breakthrough that nuclear magnetic resonance needed to develop into magnetic resonance imaging: the application of Fourier transforms for sensitive pulsed imaging. Upon this discovery, the world of research began to develop high power radio amplifiers and fast radio switches for pulsed experimentation. Consequently, continuous-wave imaging placed on the backburner.Although high power pulses are dominant in clinical imaging, there are unique advantages to low power, continuous-wave pulse sequences that transmit and receive signals simultaneously. Primarily, tissues or materials with short T2 time constants can be imaged and the peak radio power required is drastically reduced. The fundamental problem with this lies in its nature; the transmitter leaks a strong leakage signal into the receiver, thus saturating the receiver and the intended nuclear magnetic resonance signal is lost noise. Demonstrated in this dissertation is a multichannel standalone simultaneous transmit and receive (STAR) system with remote user-control that enables continuous- wave full-duplex imaging. STAR calibrates cancellation signals through vector modulators that match the leakage signal of each receiver in amplitude but opposite in phase, therefore destructively interfering the leakage signals. STAR does not require specific imaging coils or console inputs for calibration. It was designed to be general- purpose, therefore integrating into any imaging system. To begin, the user uses an Android tablet to tune STAR to match the Larmor frequency in the bore. Then, the user tells STAR to begin calibration. After self-calibrating, the user may fine-tune the calibration state of the system before enabling a low-power mode for system electronics and imaging may commence. STAR was demonstrated to isolate two receiver coils upwards of 70 dB from the transmit coil and is readily upgradable to enable the use of four receive coils. Some primary concerns of STAR are the removal of transceivers for multichannel operation, digital circuit noise, external noise, calibration speed, upgradability, and the isolation introduced; all of which are addressed in the proceeding thesis.
ContributorsColwell, Zachary Allen (Author) / Sohn, Sung-Min (Thesis advisor) / Trichopoulos, Georgios (Thesis advisor) / Aberle, James (Committee member) / Sadleir, Rosalind (Committee member) / Arizona State University (Publisher)
Created2023
168482-Thumbnail Image.png
Description
Data transmission and reception has become an important aspect in day-to-day communication. With advancement in technology, it dictates the need for accurate data transmission and reception. For this very reason, wireless transceivers are employed in almost every industrial domain for numerous applications. A special concept of distributed transceivers is proven

Data transmission and reception has become an important aspect in day-to-day communication. With advancement in technology, it dictates the need for accurate data transmission and reception. For this very reason, wireless transceivers are employed in almost every industrial domain for numerous applications. A special concept of distributed transceivers is proven to be extremely useful in the latest technologies like Internet of Things. As the name suggests, this is a collaborative communication technique where multiple transceivers are synchronized for faster and much more reliable communication. This imposes a major challenge while designing this kind of a transceiver, as all the transceivers should be operating with carrier synchronization to maintain the proper collaboration. While there are several ways to establish this sync, this thesis emphasizes one of those techniques and tries to resolve the issue in design. The carrier synchronization is achieved using time division synchronization technique. Several challenges in implementing this technique were addressed using various models simulated in MATLAB Simulink and Keysight ADS. An in detail analysis has been performed for all the techniques used for this implementation to provide a diverse perspective.
ContributorsBoorela, Venkata Srilekhya (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios C. (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2021
168299-Thumbnail Image.png
Description
Modern communication systems call for state-of-the-art links that offer almost idealistic performance. This requirement had pushed the technological world to pursue communication in frequency bands that were almost incomprehensible back when the first series of cordless cellphones were invented. These requirements have impacted everything from civilian requirements, space, medical diagnostics

Modern communication systems call for state-of-the-art links that offer almost idealistic performance. This requirement had pushed the technological world to pursue communication in frequency bands that were almost incomprehensible back when the first series of cordless cellphones were invented. These requirements have impacted everything from civilian requirements, space, medical diagnostics to defense technologies and have ushered in a new era of advancements. This work presents a new and novel approach towards improving the conventional phased array systems. The Intelligent Phase Shifter (IPS) offers phase tracking and discrimination solutions that currently plague High-Frequency wireless systems. The proposed system is implemented on (CMOS) process node to better scalability and reduce the overall power dissipated. A tracking system can discern Radio Frequency (RF) Signals’ phase characteristics using a double-balanced mixer. A locally generated reference signal is then matched to the phase of the incoming receiver using a fully modular yet continuous complete 360ᵒ phase shifter that alters the phase of the local reference and matches the phase with that of an incoming RF reference. The tracking is generally two control voltages that carry In-phase and Quadrature-phase information. These control signals offer the capability of controlling similar devices when placed in an array and eliminating any ambiguity that might occur due to in-band interference.
ContributorsLakshminarasimhaiah Rajendra, Yashas (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2021