Matching Items (22)
Filtering by

Clear all filters

150417-Thumbnail Image.png
Description
The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron mobility transistors (HEMTs) based on the established Ga-face technology and the emerging N-face technology, through a modeling approach that allows a fair comparison, indicating that the N-face devices exhibit improved performance with respect to Ga-face ones due to the natural back-barrier confinement that mitigates short-channel-effects. An investigation is then carried out on the minimum aspect ratio (i.e. gate length to gate-to-channel-distance ratio) that limits short channel effects in ultra-scaled GaN and InP HEMTs, indicating that this value in GaN devices is 15 while in InP devices is 7.5. This difference is believed to be related to the different dielectric properties of the two materials, and the corresponding different electric field distributions. The dielectric effects of the passivation layer in millimeter-wave, high-power GaN HEMTs are also investigated, finding that the effective gate length is increased by fringing capacitances, enhanced by the dielectrics in regions adjacent to the gate for layers thicker than 5 nm, strongly affecting the frequency performance of deep sub-micron devices. Lastly, efficient Full Band Monte Carlo particle-based device simulations of the large-signal performance of mm-wave transistor power amplifiers with high-Q matching networks are reported for the first time. In particular, a CellularMonte Carlo (CMC) code is self-consistently coupled with a Harmonic Balance (HB) frequency domain circuit solver. Due to the iterative nature of the HB algorithm, this simulation approach is possible only due to the computational efficiency of the CMC, which uses pre-computed scattering tables. On the other hand, HB allows the direct simulation of the steady-state behavior of circuits with long transient time. This work provides an accurate and efficient tool for the device early-stage design, which allows a computerbased performance evaluation in lieu of the extremely time-consuming and expensive iterations of prototyping and experimental large-signal characterization.
ContributorsGuerra, Diego (Author) / Saraniti, Marco (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2011
149937-Thumbnail Image.png
Description
There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon

There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) process flow. This makes a silicon MESFET transistor a very valuable device for use in any standard CMOS circuit that may usually need a separate integrated circuit (IC) in order to switch power on or from a high current/voltage because it allows this function to be performed with a single chip thereby cutting costs. The ability for the MESFET to cost effectively satisfy the needs of this any many other high current/voltage device application markets is what drives the study of MESFET optimization. Silicon MESFETs that are integrated into standard SOI CMOS processes often receive dopings during fabrication that would not ideally be there in a process made exclusively for MESFETs. Since these remnants of SOI CMOS processing effect the operation of a MESFET device, their effect can be seen in the current-voltage characteristics of a measured MESFET device. Device simulations are done and compared to measured silicon MESFET data in order to deduce the cause and effect of many of these SOI CMOS remnants. MESFET devices can be made in both fully depleted (FD) and partially depleted (PD) SOI CMOS technologies. Device simulations are used to do a comparison of FD and PD MESFETs in order to show the advantages and disadvantages of MESFETs fabricated in different technologies. It is shown that PD MESFET have the highest current per area capability. Since the PD MESFET is shown to have the highest current capability, a layout optimization method to further increase the current per area capability of the PD silicon MESFET is presented, derived, and proven to a first order.
ContributorsSochacki, John (Author) / Thornton, Trevor J (Thesis advisor) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
149909-Thumbnail Image.png
Description
ABSTRACT The purpose of this study is to demonstrate that stable lipid bilayers can be set up on an array of silicon micropores and can be used as sites for self-inserting ion-channel proteins which can be studied independently of each other. In course of this study an acrylic

ABSTRACT The purpose of this study is to demonstrate that stable lipid bilayers can be set up on an array of silicon micropores and can be used as sites for self-inserting ion-channel proteins which can be studied independently of each other. In course of this study an acrylic based holder was designed and machined to ensure leak-free fluidic access to the silicon micropores and physical isolation of the individual array channels. To measure the ion-channel currents, we simulated, designed and manufactured low-noise transimpedance amplifiers and support circuits based on published patch clamp amplifier designs, using currently available surface-mount components. This was done in order to achieve a reduction in size and costs as well as isolation of individual channels without the need for multiplexing of the input. During the experiments performed, stable bilayers were formed across an array of four vertically mounted 30 µm silicon micropores and OmpF porins were added for self insertion in each of the bilayers. To further demonstrate the independence of these bilayer recording sites, the antibiotic Ampicillin (2.5 mM) was added to one of the fluidic wells. The ionic current in each of the wells was recorded simultaneously. Sub-conductance states of Ompf porin were observed in two of the measurement sites. In addition, the conductance steps in the site containing the antibiotic could be clearly seen to be larger compared to those of the unmodified site. This is due to the transient blocking of ion flow through the porin due to translocation of the antibiotic. Based on this demonstration, ion-channel array reconstitution is a potential method for efficient electrophysiological characterization of different types of ion-channels simultaneously as well as for studying membrane permeation processes.
ContributorsRamakrishnan, Shankar (Author) / Goryll, Michael (Thesis advisor) / Thornton, Trevor J (Committee member) / Blain Christen, Jennifer M (Committee member) / Arizona State University (Publisher)
Created2011
149962-Thumbnail Image.png
Description
In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow

In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow the path of microelectronics, the fundamental physics in a nanoscale system changes more rapidly compared to microelectronics, as the size scale is decreased. The changes in length, area, and volume ratios due to reduction in size alter the relative influence of various physical effects determining the overall operation of a system in unexpected ways. One such category of nanofluidic structures demonstrating unique ionic and molecular transport characteristics are nanopores. Nanopores derive their unique transport characteristics from the electrostatic interaction of nanopore surface charge with aqueous ionic solutions. In this doctoral research cylindrical nanopores, in single and array configuration, were fabricated in silicon-on-insulator (SOI) using a combination of electron beam lithography (EBL) and reactive ion etching (RIE). The fabrication method presented is compatible with standard semiconductor foundries and allows fabrication of nanopores with desired geometries and precise dimensional control, providing near ideal and isolated physical modeling systems to study ion transport at the nanometer level. Ion transport through nanopores was characterized by measuring ionic conductances of arrays of nanopores of various diameters for a wide range of concentration of aqueous hydrochloric acid (HCl) ionic solutions. Measured ionic conductances demonstrated two distinct regimes based on surface charge interactions at low ionic concentrations and nanopore geometry at high ionic concentrations. Field effect modulation of ion transport through nanopore arrays, in a fashion similar to semiconductor transistors, was also studied. Using ionic conductance measurements, it was shown that the concentration of ions in the nanopore volume was significantly changed when a gate voltage on nanopore arrays was applied, hence controlling their transport. Based on the ion transport results, single nanopores were used to demonstrate their application as nanoscale particle counters by using polystyrene nanobeads, monodispersed in aqueous HCl solutions of different molarities. Effects of field effect modulation on particle transition events were also demonstrated.
ContributorsJoshi, Punarvasu (Author) / Thornton, Trevor J (Thesis advisor) / Goryll, Michael (Thesis advisor) / Spanias, Andreas (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
150071-Thumbnail Image.png
Description
In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user

In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user to do that by keeping every parameter used to define a material, within the non-parabolic band approximation, a variable in the control of the user. A material is defined by defining its valleys, energies, valley effective masses and their directions. The types of scattering to be included can also be chosen. The non-parabolic band structure model is used. With the deployment of the generalized Monte Carlo tool onto www.nanoHUB.org the tool will be available to users around the world. This makes it a very useful educational tool that can be incorporated into curriculums. The tool is integrated with Rappture, to allow user-friendly access of the tool. The user can freely define a material in an easy systematic way without having to worry about the coding involved. The output results are automatically graphed and since the code incorporates an analytic band structure model, it is relatively fast. The versatility of the tool has been investigated and has produced results closely matching the experimental values for some common materials. The tool has been uploaded onto www.nanoHUB.org by integrating it with the Rappture interface. By using Rappture as the user interface, one can easily make changes to the current parameter sets to obtain even more accurate results.
ContributorsHathwar, Raghuraj (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
151557-Thumbnail Image.png
Description
This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model was developed to model the piezoelectric polarization charge dependence on the applied gate voltage. As the sheet electron density in

This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model was developed to model the piezoelectric polarization charge dependence on the applied gate voltage. As the sheet electron density in the channel increases, the influence of electromechanical coupling reduces as the electric field in the comprising layers reduces. A Monte Carlo device simulator that implements the theoretical model was developed to model the transport in GaN HEMTs. It is observed that with the coupled formulation, the drain current degradation in the device varies from 2%-18% depending on the gate voltage. Degradation reduces with the increase in the gate voltage due to the increase in the electron gas density in the channel. The output and transfer characteristics match very well with the experimental data. An electro-thermal device simulator was developed coupling the Monte Caro-Poisson solver with the energy balance solver for acoustic and optical phonons. An output current degradation of around 2-3 % at a drain voltage of 5V due to self-heating was observed. It was also observed that the electrostatics near the gate to drain region of the device changes due to the hot spot created in the device from self heating. This produces an electric field in the direction of accelerating the electrons from the channel to surface states. This will aid to the current collapse phenomenon in the device. Thus, the electric field in the gate to drain region is very critical for reliable performance of the device. Simulations emulating the charging of the surface states were also performed and matched well with experimental data. Methods to improve the reliability performance of the device were also investigated in this work. A shield electrode biased at source potential was used to reduce the electric field in the gate to drain extension region. The hot spot position was moved away from the critical gate to drain region towards the drain as the shield electrode length and dielectric thickness were being altered.
ContributorsPadmanabhan, Balaji (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Alford, Terry L. (Committee member) / Venkatraman, Prasad (Committee member) / Arizona State University (Publisher)
Created2013
151648-Thumbnail Image.png
Description
Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has become a major factor. In this thesis, self-heating effects in a 25nm fully depleted (FD) SOI device are studied by implementing a 2-D particle based device simulator coupled self-consistently with the energy balance equations for both acoustic and optical phonons. Semi-analytical expressions for acoustic and optical phonon scattering rates (all modes) are derived and evaluated using quadratic dispersion relationships. Moreover, probability distribution functions for the final polar angle after scattering is also computed and the rejection technique is implemented for its selection. Since the temperature profile varies throughout the device, temperature dependent scattering tables are used for the electron transport kernel. The phonon energy balance equations are also modified to account for inelasticity in acoustic phonon scattering for all branches. Results obtained from this simulation help in understanding self-heating and the effects it has on the device characteristics. The temperature profiles in the device show a decreasing trend which can be attributed to the inelastic interaction between the electrons and the acoustic phonons. This is further proven by comparing the temperature plots with the simulation results that assume the elastic and equipartition approximation for acoustic and the Einstein model for optical phonons. Thus, acoustic phonon inelasticity and the quadratic phonon dispersion relationships play a crucial role in studying self-heating effects.
ContributorsGada, Manan Laxmichand (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Arizona State University (Publisher)
Created2013
151720-Thumbnail Image.png
Description
Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides

Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.
ContributorsGuo, Da (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Sankin, Igor (Committee member) / Arizona State University (Publisher)
Created2013
149398-Thumbnail Image.png
Description
Silicon Carbide (SiC) junction field effect transistors (JFETs) are ideal for switching high current, high voltage loads in high temperature environments. These devices require external drive circuits to generate pulse width modulated (PWM) signals switching from 0V to approximately 10V. Advanced CMOS microcontrollers are ideal for generating the PWM signals

Silicon Carbide (SiC) junction field effect transistors (JFETs) are ideal for switching high current, high voltage loads in high temperature environments. These devices require external drive circuits to generate pulse width modulated (PWM) signals switching from 0V to approximately 10V. Advanced CMOS microcontrollers are ideal for generating the PWM signals but are limited in output voltage due to their low breakdown voltage within the CMOS drive circuits. As a result, an intermediate buffer stage is required between the CMOS circuitry and the JFET. In this thesis, a discrete silicon-on-insulator (SOI) metal semiconductor field effect transistor (MESFET) was used to drive the gate of a SiC power JFET switching a 120V RMS AC supply into a 30Ω load. The wide operating temperature range and high breakdown voltage of up to 50V make the SOI MESFET ideal for power electronics in extreme environments. Characteristic curves for the MESFET were measured up to 250&degC.; To drive the JFET, the MESFET was DC biased and then driven by a 1.2V square wave PWM signal to switch the JFET gate from 0 to 10V at frequencies up to 20kHz. For simplicity, the 1.2V PWM square wave signal was provided by a 555 timer. The JFET gate drive circuit was measured at high temperatures up to 235&degC.; The circuit operated well at the high temperatures without any damage to the SOI MESFET or SiC JFET. The drive current of the JFET was limited by the duty cycle range of the 555 timer used. The SiC JFET drain current decreased with increased temperature. Due to the easy integration of MESFETs into SOI CMOS processes, MESFETs can be fabricated alongside MOSFETs without any changes in the process flow. This thesis demonstrates the feasibility of integrating a MESFET with CMOS PWM circuitry for a completely integrated SiC driver thus eliminating the need for the intermediate buffer stage.
ContributorsSummers, Nicholas, M.S (Author) / Thornton, Trevor J (Thesis advisor) / Goryll, Michael (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
171784-Thumbnail Image.png
Description
In this work, experimental photonic power converter (PPC) design, fabrication and characterization has been used, along with electrical and optical modeling, to study theoretical efficiency limits of monochromatic photovoltaic (PV) energy conversion due to photon recycling. The back-surface reflectance of a photovoltaic (PV) cell is known to strongly influence external

In this work, experimental photonic power converter (PPC) design, fabrication and characterization has been used, along with electrical and optical modeling, to study theoretical efficiency limits of monochromatic photovoltaic (PV) energy conversion due to photon recycling. The back-surface reflectance of a photovoltaic (PV) cell is known to strongly influence external radiative efficiency, a photon recycling metric (ERE), especially when reflectance is close to 100 %. Considering a perfect back reflector, an upper PV cell efficiency limit of 70.9 % and 85 % is calculated for 870.7 nm illumination at an intensity that would generate 32 mA/cm2 (1-sun) and 100 A/cm2 (3125-sun eq) photocurrent, respectively. However, when realistic non-idealities are introduced, ideal efficiency can drop by 21 % for both cases as long as the series resistivity for cells under high intensity illumination is limited to 1 mΩ cm^2. This presents a challenge for photonic energy conversion technology where high intensity lasers are typically used to deliver power to equipment from remote locations. This work discusses ways to provide reflectance enhancement while allowing sufficient current flow at the back surface. One way to do this is to use a planar transparent conductive oxide and reflective metal at the back surface. This work measures and compares the back-surface reflectance of IZO/Ag to standard reflective/conductive materials such as Au and Ag. A comparison between cells with the highest V_OC for cells processed with Au and IZO/Ag as reflective back contacts show that the V_OC for the IZO/Ag cell outperforms that of the Au cell by 6.6 mV measuring V_OC=1.071 V with a cell efficiency of 51.0 % at 780 nm LED illumination. Efficiency calculations extrapolated to other monochromatic light sources identified 841 nm as the optimal wavelength for the IZO/Ag cells with a projected efficiency of η_cell=55.5 % for incident intensity corresponding to 1-sun photocurrent. With the fill factors comparable between the cell types, at least at intensities near 1-sun equivalent photocurrent, the IZO/Ag reflective back contact design demonstrates benefits from photon recycling while not sacrificing voltage drop due to series resistance compared to cells with a standard Au back contact.
ContributorsBabcock, Sean Joseph (Author) / King, Richard R (Thesis advisor) / Honsberg, Christiana B (Committee member) / Goryll, Michael (Committee member) / Goodnick, Stephen M (Committee member) / Arizona State University (Publisher)
Created2022