Matching Items (5)
Filtering by

Clear all filters

153085-Thumbnail Image.png
Description
Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous

Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous data, it is interesting to design efficient machine learning models that are capable of performing variable selection and feature group (data source) selection simultaneously (a.k.a bi-level selection). In this thesis, I carry out research along this direction with a particular focus on designing efficient optimization algorithms. I start with a unified bi-level learning model that contains several existing feature selection models as special cases. Then the proposed model is further extended to tackle the block-wise missing data, one of the major challenges in the diagnosis of Alzheimer's Disease (AD). Moreover, I propose a novel interpretable sparse group feature selection model that greatly facilitates the procedure of parameter tuning and model selection. Last but not least, I show that by solving the sparse group hard thresholding problem directly, the sparse group feature selection model can be further improved in terms of both algorithmic complexity and efficiency. Promising results are demonstrated in the extensive evaluation on multiple real-world data sets.
ContributorsXiang, Shuo (Author) / Ye, Jieping (Thesis advisor) / Mittelmann, Hans D (Committee member) / Davulcu, Hasan (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2014
156246-Thumbnail Image.png
Description
Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node

Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node in the network for spreading the diffusion and how to top or contain a cascading failure in the network. This dissertation consists of three parts.

In the first part, we study the problem of locating multiple diffusion sources in networks under the Susceptible-Infected-Recovered (SIR) model. Given a complete snapshot of the network, we developed a sample-path-based algorithm, named clustering and localization, and proved that for regular trees, the estimators produced by the proposed algorithm are within a constant distance from the real sources with a high probability. Then, we considered the case in which only a partial snapshot is observed and proposed a new algorithm, named Optimal-Jordan-Cover (OJC). The algorithm first extracts a subgraph using a candidate selection algorithm that selects source candidates based on the number of observed infected nodes in their neighborhoods. Then, in the extracted subgraph, OJC finds a set of nodes that "cover" all observed infected nodes with the minimum radius. The set of nodes is called the Jordan cover, and is regarded as the set of diffusion sources. We proved that OJC can locate all sources with probability one asymptotically with partial observations in the Erdos-Renyi (ER) random graph. Multiple experiments on different networks were done, which show our algorithms outperform others.

In the second part, we tackle the problem of reconstructing the diffusion history from partial observations. We formulated the diffusion history reconstruction problem as a maximum a posteriori (MAP) problem and proved the problem is NP hard. Then we proposed a step-by- step reconstruction algorithm, which can always produce a diffusion history that is consistent with the partial observations. Our experimental results based on synthetic and real networks show that the algorithm significantly outperforms some existing methods.

In the third part, we consider the problem of improving the robustness of an interdependent network by rewiring a small number of links during a cascading attack. We formulated the problem as a Markov decision process (MDP) problem. While the problem is NP-hard, we developed an effective and efficient algorithm, RealWire, to robustify the network and to mitigate the damage during the attack. Extensive experimental results show that our algorithm outperforms other algorithms on most of the robustness metrics.
ContributorsChen, Zhen (Author) / Ying, Lei (Thesis advisor) / Tong, Hanghang (Thesis advisor) / Zhang, Junshan (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2018
157044-Thumbnail Image.png
Description
Spike sorting is a critical step for single-unit-based analysis of neural activities extracellularly and simultaneously recorded using multi-channel electrodes. When dealing with recordings from very large numbers of neurons, existing methods, which are mostly semiautomatic in nature, become inadequate.

This dissertation aims at automating the spike sorting process. A high performance,

Spike sorting is a critical step for single-unit-based analysis of neural activities extracellularly and simultaneously recorded using multi-channel electrodes. When dealing with recordings from very large numbers of neurons, existing methods, which are mostly semiautomatic in nature, become inadequate.

This dissertation aims at automating the spike sorting process. A high performance, automatic and computationally efficient spike detection and clustering system, namely, the M-Sorter2 is presented. The M-Sorter2 employs the modified multiscale correlation of wavelet coefficients (MCWC) for neural spike detection. At the center of the proposed M-Sorter2 are two automatic spike clustering methods. They share a common hierarchical agglomerative modeling (HAM) model search procedure to strategically form a sequence of mixture models, and a new model selection criterion called difference of model evidence (DoME) to automatically determine the number of clusters. The M-Sorter2 employs two methods differing by how they perform clustering to infer model parameters: one uses robust variational Bayes (RVB) and the other uses robust Expectation-Maximization (REM) for Student’s 𝑡-mixture modeling. The M-Sorter2 is thus a significantly improved approach to sorting as an automatic procedure.

M-Sorter2 was evaluated and benchmarked with popular algorithms using simulated, artificial and real data with truth that are openly available to researchers. Simulated datasets with known statistical distributions were first used to illustrate how the clustering algorithms, namely REMHAM and RVBHAM, provide robust clustering results under commonly experienced performance degrading conditions, such as random initialization of parameters, high dimensionality of data, low signal-to-noise ratio (SNR), ambiguous clusters, and asymmetry in cluster sizes. For the artificial dataset from single-channel recordings, the proposed sorter outperformed Wave_Clus, Plexon’s Offline Sorter and Klusta in most of the comparison cases. For the real dataset from multi-channel electrodes, tetrodes and polytrodes, the proposed sorter outperformed all comparison algorithms in terms of false positive and false negative rates. The software package presented in this dissertation is available for open access.
ContributorsMa, Weichao (Author) / Si, Jennie (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / He, Jingrui (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
155191-Thumbnail Image.png
Description
Identifying chemical compounds that inhibit bacterial infection has recently gained a considerable amount of attention given the increased number of highly resistant bacteria and the serious health threat it poses around the world. With the development of automated microscopy and image analysis systems, the process of identifying novel therapeutic drugs

Identifying chemical compounds that inhibit bacterial infection has recently gained a considerable amount of attention given the increased number of highly resistant bacteria and the serious health threat it poses around the world. With the development of automated microscopy and image analysis systems, the process of identifying novel therapeutic drugs can generate an immense amount of data - easily reaching terabytes worth of information. Despite increasing the vast amount of data that is currently generated, traditional analytical methods have not increased the overall success rate of identifying active chemical compounds that eventually become novel therapeutic drugs. Moreover, multispectral imaging has become ubiquitous in drug discovery due to its ability to provide valuable information on cellular and sub-cellular processes using florescent reagents. These reagents are often costly and toxic to cells over an extended period of time causing limitations in experimental design. Thus, there is a significant need to develop a more efficient process of identifying active chemical compounds.

This dissertation introduces novel machine learning methods based on parallelized cellomics to analyze interactions between cells, bacteria, and chemical compounds while reducing the use of fluorescent reagents. Machine learning analysis using image-based high-content screening (HCS) data is compartmentalized into three primary components: (1) \textit{Image Analytics}, (2) \textit{Phenotypic Analytics}, and (3) \textit{Compound Analytics}. A novel software analytics tool called the Insights project is also introduced. The Insights project fully incorporates distributed processing, high performance computing, and database management that can rapidly and effectively utilize and store massive amounts of data generated using HCS biological assessments (bioassays). It is ideally suited for parallelized cellomics in high dimensional space.

Results demonstrate that a parallelized cellomics approach increases the quality of a bioassay while vastly decreasing the need for control data. The reduction in control data leads to less fluorescent reagent consumption. Furthermore, a novel proposed method that uses single-cell data points is proven to identify known active chemical compounds with a high degree of accuracy, despite traditional quality control measurements indicating the bioassay to be of poor quality. This, ultimately, decreases the time and resources needed in optimizing bioassays while still accurately identifying active compounds.
ContributorsTrevino, Robert (Author) / Liu, Huan (Thesis advisor) / Lamkin, Thomas J (Committee member) / He, Jingrui (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2016
157589-Thumbnail Image.png
Description
Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the attributed networks. In many cases, people are inundated with vast

Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the attributed networks. In many cases, people are inundated with vast amounts of data that can be structured into attributed networks, and their use has been attractive to researchers and practitioners in different disciplines. For example, in social media, users interact with each other and also post personalized content; in scientific collaboration, researchers cooperate and are distinct from peers by their unique research interests; in complex diseases studies, rich gene expression complements to the gene-regulatory networks. Clearly, attributed networks are ubiquitous and form a critical component of modern information infrastructure. To gain deep insights from such networks, it requires a fundamental understanding of their unique characteristics and be aware of the related computational challenges.

My dissertation research aims to develop a suite of novel learning algorithms to understand, characterize, and gain actionable insights from attributed networks, to benefit high-impact real-world applications. In the first part of this dissertation, I mainly focus on developing learning algorithms for attributed networks in a static environment at two different levels: (i) attribute level - by designing feature selection algorithms to find high-quality features that are tightly correlated with the network topology; and (ii) node level - by presenting network embedding algorithms to learn discriminative node embeddings by preserving node proximity w.r.t. network topology structure and node attribute similarity. As changes are essential components of attributed networks and the results of learning algorithms will become stale over time, in the second part of this dissertation, I propose a family of online algorithms for attributed networks in a dynamic environment to continuously update the learning results on the fly. In fact, developing application-aware learning algorithms is more desired with a clear understanding of the application domains and their unique intents. As such, in the third part of this dissertation, I am also committed to advancing real-world applications on attributed networks by incorporating the objectives of external tasks into the learning process.
ContributorsLi, Jundong (Author) / Liu, Huan (Thesis advisor) / Faloutsos, Christos (Committee member) / He, Jingrui (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2019