Matching Items (58)
Filtering by

Clear all filters

154721-Thumbnail Image.png
Description
Several music players have evolved in multi-dimensional and surround sound systems. The audio players are implemented as software applications for different audio hardware systems. Digital formats and wireless networks allow for audio content to be readily accessible on smart networked devices. Therefore, different audio output platforms ranging from multispeaker high-end

Several music players have evolved in multi-dimensional and surround sound systems. The audio players are implemented as software applications for different audio hardware systems. Digital formats and wireless networks allow for audio content to be readily accessible on smart networked devices. Therefore, different audio output platforms ranging from multispeaker high-end surround systems to single unit Bluetooth speakers have been developed. A large body of research has been carried out in audio processing, beamforming, sound fields etc. and new formats are developed to create realistic audio experiences.

An emerging trend is seen towards high definition AV systems, virtual reality gears as well as gaming applications with multidimensional audio. Next generation media technology is concentrating around Virtual reality experience and devices. It has applications not only in gaming but all other fields including medical, entertainment, engineering, and education. All such systems also require realistic audio corresponding with the visuals.

In the project presented in this thesis, a new portable audio hardware system is designed and developed along with a dedicated mobile android application to render immersive surround sound experiences with real-time audio effects. The tablet and mobile phone allow the user to control or “play” with sound directionality and implement various audio effects including sound rotation, spatialization, and other immersive experiences. The thesis describes the hardware and software design, provides the theory of the sound effects, and presents demonstrations of the sound application that was created.
ContributorsDharmadhikari, Chinmay (Author) / Spanias, Andreas (Thesis advisor) / Turaga, Pavan (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2016
154630-Thumbnail Image.png
Description
There has been tremendous technological advancement in the past two decades. Faster computers and improved sensing devices have broadened the research scope in computer vision. With these developments, the task of assessing the quality of human actions, is considered an important problem that needs to be tackled. Movement quality assessment

There has been tremendous technological advancement in the past two decades. Faster computers and improved sensing devices have broadened the research scope in computer vision. With these developments, the task of assessing the quality of human actions, is considered an important problem that needs to be tackled. Movement quality assessment finds wide range of application in motor control, health-care, rehabilitation and physical therapy. Home-based interactive physical therapy requires the ability to monitor, inform and assess the quality of everyday movements. Obtaining labeled data from trained therapists/experts is the main limitation, since it is both expensive and time consuming.

Motivated by recent studies in motor control and therapy, in this thesis an existing computational framework is used to assess balance impairment and disease severity in people suffering from Parkinson's disease. The framework uses high-dimensional shape descriptors of the reconstructed phase space, of the subjects' center of pressure (CoP) tracings while performing dynamical postural shifts. The performance of the framework is evaluated using a dataset collected from 43 healthy and 17 Parkinson's disease impaired subjects, and outperforms other methods, such as dynamical shift indices and use of chaotic invariants, in assessment of balance impairment.

In this thesis, an unsupervised method is also proposed that measures movement quality assessment of simple actions like sit-to-stand and dynamic posture shifts by modeling the deviation of a given movement from an ideal movement path in the configuration space, i.e. the quality of movement is directly related to similarity to the ideal trajectory, between the start and end pose. The S^1xS^1 configuration space was used to model the interaction of two joint angles in sit-to-stand actions, and the R^2 space was used to model the subject's CoP while performing dynamic posture shifts for application in movement quality estimation.
ContributorsSom, Anirudh (Author) / Turaga, Pavan (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2016
154815-Thumbnail Image.png
Description
Utility scale solar energy is generated by photovoltaic (PV) cell arrays, which are often deployed in remote areas. A PV array monitoring system is considered where smart sensors are attached to the PV modules and transmit data to a monitoring station through wireless links. These smart monitoring devices may be

Utility scale solar energy is generated by photovoltaic (PV) cell arrays, which are often deployed in remote areas. A PV array monitoring system is considered where smart sensors are attached to the PV modules and transmit data to a monitoring station through wireless links. These smart monitoring devices may be used for fault detection and management of connection topologies. In this thesis, a compact hardware simulator of the smart PV array monitoring system is described. The voltage, current, irradiance, and temperature of each PV module are monitored and the status of each panel along with all data is transmitted to a mobile device. LabVIEW and Arduino board programs have been developed to display and visualize the monitoring data from all sensors. All data is saved on servers and mobile devices and desktops can easily access analytics from anywhere. Various PV array conditions including shading, faults, and loading are simulated and demonstrated.

Additionally, Electrical mismatch between modules in a PV array due to partial shading causes energy losses beyond the shaded module, as unshaded modules are forced to operate away from their maximum power point in order to compensate for the shading. An irradiance estimation algorithm is presented for use in a mismatch mitigation system. Irradiance is estimated using measurements of module voltage, current, and back surface temperature. These estimates may be used to optimize an array’s electrical configuration and reduce the mismatch losses caused by partial shading. Propagation of error in the estimation is examined; it is found that accuracy is sufficient for use in the proposed mismatch mitigation application.
ContributorsPeshin, Shwetang (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2016
154835-Thumbnail Image.png
Description
Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation or failures, these devices require a system identification process to track and diagnose their parameters. The system identification process should

Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation or failures, these devices require a system identification process to track and diagnose their parameters. The system identification process should be performed on-line to not affect the normal operation of the device. Identifying the parameters of the system is essential to design and tune an adaptive proportional-integral-derivative (PID) controller.

Three techniques were used to design the PID controller. Phase and gain margin still prevails as one of the easiest methods to design controllers. Pole-zero cancellation is another technique which is based on pole-placement. However, although these controllers can be easily designed, they did not provide the best response compared to the Frequency Loop Shaping (FLS) technique. Therefore, since FLS showed to have a better frequency and time responses compared to the other two controllers, it was selected to perform the adaptation of the system.

An on-line system identification process was performed for the buck converter using indirect adaptation and the least square algorithm. The estimation error and the parameter error were computed to determine the rate of convergence of the system. The indirect adaptation required about 2000 points to converge to the true parameters prior designing the controller. These results were compared to the adaptation executed using robust stability condition (RSC) and a switching controller. Two different scenarios were studied consisting of five plants that defined the percentage of deterioration of the capacitor and inductor within the buck converter. The switching logic did not always select the optimal controller for the first scenario because the frequency response of the different plants was not significantly different. However, the second scenario consisted of plants with more noticeable different frequency responses and the switching logic selected the optimal controller all the time in about 500 points. Additionally, a disturbance was introduced at the plant input to observe its effect in the switching controller. However, for reasonable low disturbances no change was detected in the proper selection of controllers.
ContributorsSerrano Rodriguez, Victoria Melissa (Author) / Tsakalis, Konstantinos (Thesis advisor) / Bakkaloglu, Bertan (Thesis advisor) / Rodriguez, Armando (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2016
155036-Thumbnail Image.png
Description
For a sensor array, part of its elements may fail to work due to hardware failures. Then the missing data may distort in the beam pattern or decrease the accuracy of direction-of-arrival (DOA) estimation. Therefore, considerable research has been conducted to develop algorithms that can estimate the missing signal information.

For a sensor array, part of its elements may fail to work due to hardware failures. Then the missing data may distort in the beam pattern or decrease the accuracy of direction-of-arrival (DOA) estimation. Therefore, considerable research has been conducted to develop algorithms that can estimate the missing signal information. On the other hand, through those algorithms, array elements can also be selectively turned off while the missed information can be successfully recovered, which will save power consumption and hardware cost.

Conventional approaches focusing on array element failures are mainly based on interpolation or sequential learning algorithm. Both of them rely heavily on some prior knowledge such as the information of the failures or a training dataset without missing data. In addition, since most of the existing approaches are developed for DOA estimation, their recovery target is usually the co-variance matrix but not the signal matrix.

In this thesis, a new signal recovery method based on matrix completion (MC) theory is introduced. It aims to directly refill the absent entries in the signal matrix without any prior knowledge. We proposed a novel overlapping reshaping method to satisfy the applying conditions of MC algorithms. Compared to other existing MC based approaches, our proposed method can provide us higher probability of successful recovery. The thesis describes the principle of the algorithms and analyzes the performance of this method. A few application examples with simulation results are also provided.
ContributorsFan, Jie (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2016
155064-Thumbnail Image.png
Description
From time immemorial, epilepsy has persisted to be one of the greatest impediments to human life for those stricken by it. As the fourth most common neurological disorder, epilepsy causes paroxysmal electrical discharges in the brain that manifest as seizures. Seizures have the effect of debilitating patients on a physical

From time immemorial, epilepsy has persisted to be one of the greatest impediments to human life for those stricken by it. As the fourth most common neurological disorder, epilepsy causes paroxysmal electrical discharges in the brain that manifest as seizures. Seizures have the effect of debilitating patients on a physical and psychological level. Although not lethal by themselves, they can bring about total disruption in consciousness which can, in hazardous conditions, lead to fatality. Roughly 1\% of the world population suffer from epilepsy and another 30 to 50 new cases per 100,000 increase the number of affected annually. Controlling seizures in epileptic patients has therefore become a great medical and, in recent years, engineering challenge.



In this study, the conditions of human seizures are recreated in an animal model of temporal lobe epilepsy. The rodents used in this study are chemically induced to become chronically epileptic. Their Electroencephalogram (EEG) data is then recorded and analyzed to detect and predict seizures; with the ultimate goal being the control and complete suppression of seizures.



Two methods, the maximum Lyapunov exponent and the Generalized Partial Directed Coherence (GPDC), are applied on EEG data to extract meaningful information. Their effectiveness have been reported in the literature for the purpose of prediction of seizures and seizure focus localization. This study integrates these measures, through some modifications, to robustly detect seizures and separately find precursors to them and in consequence provide stimulation to the epileptic brain of rats in order to suppress seizures. Additionally open-loop stimulation with biphasic currents of various pairs of sites in differing lengths of time have helped us create control efficacy maps. While GPDC tells us about the possible location of the focus, control efficacy maps tells us how effective stimulating a certain pair of sites will be.



The results from computations performed on the data are presented and the feasibility of the control problem is discussed. The results show a new reliable means of seizure detection even in the presence of artifacts in the data. The seizure precursors provide a means of prediction, in the order of tens of minutes, prior to seizures. Closed loop stimulation experiments based on these precursors and control efficacy maps on the epileptic animals show a maximum reduction of seizure frequency by 24.26\% in one animal and reduction of length of seizures by 51.77\% in another. Thus, through this study it was shown that the implementation of the methods can ameliorate seizures in an epileptic patient. It is expected that the new knowledge and experimental techniques will provide a guide for future research in an effort to ultimately eliminate seizures in epileptic patients.
ContributorsShafique, Md Ashfaque Bin (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Muthuswamy, Jitendran (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2016
155540-Thumbnail Image.png
Description
Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes.





Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo vision based, in-line ball height and coplanarity inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging setup and calibration, ball height estimation and substrate coplanarity calculation are presented with novel stereo vision methods. The results of the proposed method are evaluated in a measurement capability analysis (MCA) procedure and compared with the ground-truth obtained by an existing laser scanning tool and an existing confocal inspection tool. The proposed system outperforms existing inspection tools in terms of accuracy and stability.



In a rectified stereo vision system, stereo matching methods can be categorized into global methods and local methods. Local stereo methods are more suitable for real-time processing purposes with competitive accuracy as compared with global methods. This work proposes a stereo matching method based on sparse locally adaptive cost aggregation. In order to reduce outlier disparity values that correspond to mis-matches, a novel sparse disparity subset selection method is proposed by assigning a significance status to candidate disparity values, and selecting the significant disparity values adaptively. An adaptive guided filtering method using the disparity subset for refined cost aggregation and disparity calculation is demonstrated. The proposed stereo matching algorithm is tested on the Middlebury and the KITTI stereo evaluation benchmark images. A performance analysis of the proposed method in terms of the I0 norm of the disparity subset is presented to demonstrate the achieved efficiency and accuracy.
ContributorsLi, Jinjin (Author) / Karam, Lina (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Patel, Nital (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2017
149615-Thumbnail Image.png
Description
This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas

This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas sensor system is required. This thesis describes the research, development, implementation and test of a small and portable based prototype platform for chemical gas sensors to enable a low-power and low noise gas detection system. The AFE reads out the outputs of eight conductometric sensor array and eight amperometric sensor arrays. The IC consists of a low noise potentiostat, and associated 9bit current-steering DAC for sensor stimulus, followed by the first order nested chopped £U£G ADC. The conductometric sensor uses a current driven approach for extracting conductance of the sensor depending on gas concentration. The amperometric sensor uses a potentiostat to apply constant voltage to the sensors and an I/V converter to measure current out of the sensor. The core area for the AFE is 2.65x0.95 mm2. The proposed system achieves 91 dB SNR at 1.32 mW quiescent power consumption per channel. With digital offset storage and nested chopping, the readout chain achieves 500 fÝV input referred offset.
ContributorsKim, Hyun-Tae (Author) / Bakkaloglu, Bertan (Thesis advisor) / Vermeire, Bert (Committee member) / Spanias, Andreas (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2011
149361-Thumbnail Image.png
Description
Distributed inference has applications in fields as varied as source localization, evaluation of network quality, and remote monitoring of wildlife habitats. In this dissertation, distributed inference algorithms over multiple-access channels are considered. The performance of these algorithms and the effects of wireless communication channels on the performance are studied. In

Distributed inference has applications in fields as varied as source localization, evaluation of network quality, and remote monitoring of wildlife habitats. In this dissertation, distributed inference algorithms over multiple-access channels are considered. The performance of these algorithms and the effects of wireless communication channels on the performance are studied. In a first class of problems, distributed inference over fading Gaussian multiple-access channels with amplify-and-forward is considered. Sensors observe a phenomenon and transmit their observations using the amplify-and-forward scheme to a fusion center (FC). Distributed estimation is considered with a single antenna at the FC, where the performance is evaluated using the asymptotic variance of the estimator. The loss in performance due to varying assumptions on the limited amounts of channel information at the sensors is quantified. With multiple antennas at the FC, a distributed detection problem is also considered, where the error exponent is used to evaluate performance. It is shown that for zero-mean channels between the sensors and the FC when there is no channel information at the sensors, arbitrarily large gains in the error exponent can be obtained with sufficient increase in the number of antennas at the FC. In stark contrast, when there is channel information at the sensors, the gain in error exponent due to having multiple antennas at the FC is shown to be no more than a factor of 8/π for Rayleigh fading channels between the sensors and the FC, independent of the number of antennas at the FC, or correlation among noise samples across sensors. In a second class of problems, sensor observations are transmitted to the FC using constant-modulus phase modulation over Gaussian multiple-access-channels. The phase modulation scheme allows for constant transmit power and estimation of moments other than the mean with a single transmission from the sensors. Estimators are developed for the mean, variance and signal-to-noise ratio (SNR) of the sensor observations. The performance of these estimators is studied for different distributions of the observations. It is proved that the estimator of the mean is asymptotically efficient if and only if the distribution of the sensor observations is Gaussian.
ContributorsBanavar, Mahesh Krishna (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Duman, Tolga (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2010
168287-Thumbnail Image.png
Description
Dealing with relational data structures is central to a wide-range of applications including social networks, epidemic modeling, molecular chemistry, medicine, energy distribution, and transportation. Machine learning models that can exploit the inherent structural/relational bias in the graph structured data have gained prominence in recent times. A recurring idea that appears

Dealing with relational data structures is central to a wide-range of applications including social networks, epidemic modeling, molecular chemistry, medicine, energy distribution, and transportation. Machine learning models that can exploit the inherent structural/relational bias in the graph structured data have gained prominence in recent times. A recurring idea that appears in all approaches is to encode the nodes in the graph (or the entire graph) as low-dimensional vectors also known as embeddings, prior to carrying out downstream task-specific learning. It is crucial to eliminate hand-crafted features and instead directly incorporate the structural inductive bias into the deep learning architectures. In this dissertation, deep learning models that directly operate on graph structured data are proposed for effective representation learning. A literature review on existing graph representation learning is provided in the beginning of the dissertation. The primary focus of dissertation is on building novel graph neural network architectures that are robust against adversarial attacks. The proposed graph neural network models are extended to multiplex graphs (heterogeneous graphs). Finally, a relational neural network model is proposed to operate on a human structural connectome. For every research contribution of this dissertation, several empirical studies are conducted on benchmark datasets. The proposed graph neural network models, approaches, and architectures demonstrate significant performance improvements in comparison to the existing state-of-the-art graph embedding strategies.
ContributorsShanthamallu, Uday Shankar (Author) / Spanias, Andreas (Thesis advisor) / Thiagarajan, Jayaraman J (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2021