Matching Items (30)
Filtering by

Clear all filters

152003-Thumbnail Image.png
Description
We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.
ContributorsDesai, Vaishnav (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152770-Thumbnail Image.png
Description
Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present in the textures. This structure can be expressed in terms

Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present in the textures. This structure can be expressed in terms of perceived regularity. Our human visual system (HVS) uses the perceived regularity as one of the important pre-attentive cues in low-level image understanding. Similar to the HVS, image processing and computer vision systems can make fast and efficient decisions if they can quantify this regularity automatically. In this work, the problem of quantifying the degree of perceived regularity when looking at an arbitrary texture is introduced and addressed. One key contribution of this work is in proposing an objective no-reference perceptual texture regularity metric based on visual saliency. Other key contributions include an adaptive texture synthesis method based on texture regularity, and a low-complexity reduced-reference visual quality metric for assessing the quality of synthesized textures. In order to use the best performing visual attention model on textures, the performance of the most popular visual attention models to predict the visual saliency on textures is evaluated. Since there is no publicly available database with ground-truth saliency maps on images with exclusive texture content, a new eye-tracking database is systematically built. Using the Visual Saliency Map (VSM) generated by the best visual attention model, the proposed texture regularity metric is computed. The proposed metric is based on the observation that VSM characteristics differ between textures of differing regularity. The proposed texture regularity metric is based on two texture regularity scores, namely a textural similarity score and a spatial distribution score. In order to evaluate the performance of the proposed regularity metric, a texture regularity database called RegTEX, is built as a part of this work. It is shown through subjective testing that the proposed metric has a strong correlation with the Mean Opinion Score (MOS) for the perceived regularity of textures. The proposed method is also shown to be robust to geometric and photometric transformations and outperforms some of the popular texture regularity metrics in predicting the perceived regularity. The impact of the proposed metric to improve the performance of many image-processing applications is also presented. The influence of the perceived texture regularity on the perceptual quality of synthesized textures is demonstrated through building a synthesized textures database named SynTEX. It is shown through subjective testing that textures with different degrees of perceived regularities exhibit different degrees of vulnerability to artifacts resulting from different texture synthesis approaches. This work also proposes an algorithm for adaptively selecting the appropriate texture synthesis method based on the perceived regularity of the original texture. A reduced-reference texture quality metric for texture synthesis is also proposed as part of this work. The metric is based on the change in perceived regularity and the change in perceived granularity between the original and the synthesized textures. The perceived granularity is quantified through a new granularity metric that is proposed in this work. It is shown through subjective testing that the proposed quality metric, using just 2 parameters, has a strong correlation with the MOS for the fidelity of synthesized textures and outperforms the state-of-the-art full-reference quality metrics on 3 different texture databases. Finally, the ability of the proposed regularity metric in predicting the perceived degradation of textures due to compression and blur artifacts is also established.
ContributorsVaradarajan, Srenivas (Author) / Karam, Lina J (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Li, Baoxin (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
153394-Thumbnail Image.png
Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
ContributorsSun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created2011
150244-Thumbnail Image.png
Description
A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment

A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment challenging, including the massive amounts of data available, large numbers of users, and a highly dynamic environment, provide unique and untapped opportunities for solving the provenance problem for social media. Current approaches for tracking provenance data do not scale for online social media and consequently there is a gap in provenance methodologies and technologies providing exciting research opportunities. The guiding vision is the use of social media information itself to realize a useful amount of provenance data for information in social media. This departs from traditional approaches for data provenance which rely on a central store of provenance information. The contemporary online social media environment is an enormous and constantly updated "central store" that can be mined for provenance information that is not readily made available to the average social media user. This research introduces an approach and builds a foundation aimed at realizing a provenance data capability for social media users that is not accessible today.
ContributorsBarbier, Geoffrey P (Author) / Liu, Huan (Thesis advisor) / Bell, Herbert (Committee member) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150362-Thumbnail Image.png
Description
There are many wireless communication and networking applications that require high transmission rates and reliability with only limited resources in terms of bandwidth, power, hardware complexity etc.. Real-time video streaming, gaming and social networking are a few such examples. Over the years many problems have been addressed towards the goal

There are many wireless communication and networking applications that require high transmission rates and reliability with only limited resources in terms of bandwidth, power, hardware complexity etc.. Real-time video streaming, gaming and social networking are a few such examples. Over the years many problems have been addressed towards the goal of enabling such applications; however, significant challenges still remain, particularly, in the context of multi-user communications. With the motivation of addressing some of these challenges, the main focus of this dissertation is the design and analysis of capacity approaching coding schemes for several (wireless) multi-user communication scenarios. Specifically, three main themes are studied: superposition coding over broadcast channels, practical coding for binary-input binary-output broadcast channels, and signalling schemes for two-way relay channels. As the first contribution, we propose an analytical tool that allows for reliable comparison of different practical codes and decoding strategies over degraded broadcast channels, even for very low error rates for which simulations are impractical. The second contribution deals with binary-input binary-output degraded broadcast channels, for which an optimal encoding scheme that achieves the capacity boundary is found, and a practical coding scheme is given by concatenation of an outer low density parity check code and an inner (non-linear) mapper that induces desired distribution of "one" in a codeword. The third contribution considers two-way relay channels where the information exchange between two nodes takes place in two transmission phases using a coding scheme called physical-layer network coding. At the relay, a near optimal decoding strategy is derived using a list decoding algorithm, and an approximation is obtained by a joint decoding approach. For the latter scheme, an analytical approximation of the word error rate based on a union bounding technique is computed under the assumption that linear codes are employed at the two nodes exchanging data. Further, when the wireless channel is frequency selective, two decoding strategies at the relay are developed, namely, a near optimal decoding scheme implemented using list decoding, and a reduced complexity detection/decoding scheme utilizing a linear minimum mean squared error based detector followed by a network coded sequence decoder.
ContributorsBhat, Uttam (Author) / Duman, Tolga M. (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Li, Baoxin (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2011
149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
151028-Thumbnail Image.png
Description
In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can

In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can get very involved due to the underlying non-linearity associated with the space. As a result a complex task such as manifold sequence matching would require very large number of computations making it hard to use in practice. We believe that one can device smart approximation algorithms for several classes of such problems which take into account the geometry of the manifold and maintain the favorable properties of the exact approach. This problem has several applications in areas of human activity discovery and recognition, where several features and representations are naturally studied in a non-Euclidean setting. We propose a novel solution to the problem of indexing manifold-valued sequences by proposing an intrinsic approach to map sequences to a symbolic representation. This is shown to enable the deployment of fast and accurate algorithms for activity recognition, motif discovery, and anomaly detection. Toward this end, we present generalizations of key concepts of piece-wise aggregation and symbolic approximation for the case of non-Euclidean manifolds. Experiments show that one can replace expensive geodesic computations with much faster symbolic computations with little loss of accuracy in activity recognition and discovery applications. The proposed methods are ideally suited for real-time systems and resource constrained scenarios.
ContributorsAnirudh, Rushil (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2012
151024-Thumbnail Image.png
Description
Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control grid interpolation (1DCGI), vertical temporal filter (VTF) and temporal line

Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control grid interpolation (1DCGI), vertical temporal filter (VTF) and temporal line averaging (LA). The proposed method performs better than several popular benchmarking methods in terms of both visual quality and peak signal to noise ratio (PSNR). The algorithm performs better than existing approaches like edge-based line averaging (ELA) and spatio-temporal edge-based median filtering (STELA) on fine moving edges and semi-static regions of videos, which are recognized as particularly challenging deinterlacing cases. The proposed approach also performs better than the state-of-the-art content adaptive vertical temporal filtering (CAVTF) approach. Along with the main approach several spin-off approaches are also proposed each with its own characteristics.
ContributorsVenkatesan, Ragav (Author) / Frakes, David H (Thesis advisor) / Li, Baoxin (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2012
151120-Thumbnail Image.png
Description
Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains a vision-threatening complication and one of the leading causes of

Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains a vision-threatening complication and one of the leading causes of blindness among American adults. Recent studies have shown that diagnosis based on digital retinal imaging has potential benefits over traditional face-to-face evaluation. Yet there is a dearth of computer-based systems that can match the level of performance achieved by ophthalmologists. This thesis takes a fresh perspective in developing a computer-based system aimed at improving diagnosis of DR images. These images are categorized into three classes according to their severity level. The proposed approach explores effective methods to classify new images and retrieve clinically-relevant images from a database with prior diagnosis information associated with them. Retrieval provides a novel way to utilize the vast knowledge in the archives of previously-diagnosed DR images and thereby improve a clinician's performance while classification can safely reduce the burden on DR screening programs and possibly achieve higher detection accuracy than human experts. To solve the three-class retrieval and classification problem, the approach uses a multi-class multiple-instance medical image retrieval framework that makes use of spectrally tuned color correlogram and steerable Gaussian filter response features. The results show better retrieval and classification performances than prior-art methods and are also observed to be of clinical and visual relevance.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012