Matching Items (27)
Filtering by

Clear all filters

152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
152056-Thumbnail Image.png
Description
This dissertation proposes a miniature FIR filter that works at microwave frequencies, whose filter response can ideally be digitally programmed. Such a frequency agile device can find applications in cellular communications and wireless networking. The basic concept of the FIR filter utilizes a low loss acoustic waveguide of appropriate geometry

This dissertation proposes a miniature FIR filter that works at microwave frequencies, whose filter response can ideally be digitally programmed. Such a frequency agile device can find applications in cellular communications and wireless networking. The basic concept of the FIR filter utilizes a low loss acoustic waveguide of appropriate geometry that acts as a traveling wave tapped-delay line. The input RF signal is applied by an array of capacitive transducers at various locations on the acoustic waveguide at one end that excites waves of a propagating acoustic mode with varying spatial delays and amplitudes which interfere as they propagate. The output RF signal is picked up at the other end of the waveguide by another array of capacitive transducers. Tuning of the FIR filter coefficients is realized by controlling the DC voltage profile applied to the individual transducers which essentially shapes the overall filter response. Equivalent circuit modeling of the capacitive transducer, acoustic waveguide and transducer-line coupling is presented in this dissertation. A theoretical model for the filter is developed from a general theory of an array of transducers exciting a waveguide and is used to obtain a set of filter design equations. A MATLAB based circuit simulator is developed to simulate the filter responses. Design parameters and simulation results obtained for an example waveguide structure are presented and compared to the values estimated by the theoretical model. A waveguide structure utilizing the Rayleigh-like mode of a ridge is then introduced. A semi-analytical method to obtain propagating elastic modes of such a ridge waveguide etched in an anisotropic crystal is presented. Microfabrication of a filter based on ridges etched in single crystal Silicon is discussed along with details of the challenges faced. Finally, future work and a few alternative designs are presented that can have a better chance of success. Analysis and modeling work to this point has given a good understanding of the working principles, performance tradeoffs and fabrication pitfalls of the proposed device. With the appropriate acoustic waveguide structure, the proposed device could make it possible to realize miniature programmable FIR filters in the GHz range.
ContributorsGalinde, Ameya (Author) / Abbaspour-Tamijani, Abbas (Thesis advisor) / Chae, Junseok (Committee member) / Pan, George (Committee member) / Phillips, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
151418-Thumbnail Image.png
Description
ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of

ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
ContributorsDaugherty, Robin (Author) / Allee, David R. (Thesis advisor) / Chae, Junseok (Thesis advisor) / Aberle, James T (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
152687-Thumbnail Image.png
Description
Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to this study. Also for fundamental scientific investigations in general and for some applications such as brain machine interface, the recorded neural waveforms need to be analyzed first to identify neural action potentials as basic computing units. Prior to analyzing and modeling the recorded neural signals, this dissertation proposes an advanced spike sorting system, the M-Sorter, to extract the action potentials from raw neural waveforms. The M-Sorter shows better or comparable performance compared with two other popular spike sorters under automatic mode. With the sorted action potentials in place, neuronal activity in the AGm and AGl areas in rats during learning of a directional choice task is examined. Systematic analyses suggest that rat's neural activity in AGm and AGl was modulated by previous trial outcomes during learning. Single unit based neural dynamics during task learning are described in detail in the dissertation. Furthermore, the differences in neural modulation between fast and slow learning rats were compared. The results show that the level of neural modulation of previous trial outcome is different in fast and slow learning rats which may in turn suggest an important role of previous trial outcome encoding in learning.
ContributorsYuan, Yu'an (Author) / Si, Jennie (Thesis advisor) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2014
152691-Thumbnail Image.png
Description
Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and

Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and a neural network adapt as learning progresses. In this dissertation, single units in the medial and lateral agranular (AGm and AGl) cortices were recorded as rats learned a directional choice task. The task required the rat to make a left/right side lever press if a light cue appeared on the left/right side of the interface panel. Behavior analysis showed that rat's movement parameters during performance of directional choices became stereotyped very quickly (2-3 days) while learning to solve the directional choice problem took weeks to occur. The entire learning process was further broken down to 3 stages, each having similar number of recording sessions (days). Single unit based firing rate analysis revealed that 1) directional rate modulation was observed in both cortices; 2) the averaged mean rate between left and right trials in the neural ensemble each day did not change significantly among the three learning stages; 3) the rate difference between left and right trials of the ensemble did not change significantly either. Besides, for either left or right trials, the trial-to-trial firing variability of single neurons did not change significantly over the three stages. To explore the spatiotemporal neural pattern of the recorded ensemble, support vector machines (SVMs) were constructed each day to decode the direction of choice in single trials. Improved classification accuracy indicated enhanced discriminability between neural patterns of left and right choices as learning progressed. When using a restricted Boltzmann machine (RBM) model to extract features from neural activity patterns, results further supported the idea that neural firing patterns adapted during the three learning stages to facilitate the neural codes of directional choices. Put together, these findings suggest a spatiotemporal neural coding scheme in a rat AGl and AGm neural ensemble that may be responsible for and contributing to learning the directional choice task.
ContributorsMao, Hongwei (Author) / Si, Jennie (Thesis advisor) / Buneo, Christopher (Committee member) / Cao, Yu (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2014
152800-Thumbnail Image.png
Description
To uncover the neural correlates to go-directed behavior, single unit action potentials are considered fundamental computing units and have been examined by different analytical methodologies under a broad set of hypotheses. Using a behaving rat performing a directional choice learning task, we aim to study changes in rat's cortical neural

To uncover the neural correlates to go-directed behavior, single unit action potentials are considered fundamental computing units and have been examined by different analytical methodologies under a broad set of hypotheses. Using a behaving rat performing a directional choice learning task, we aim to study changes in rat's cortical neural patterns while he improved his task performance accuracy from chance to 80% or higher. Specifically, simultaneous multi-channel single unit neural recordings from the rat's agranular medial (AGm) and Agranular lateral (AGl) cortices were analyzed using joint peristimulus time histogram (JPSTHs), which effectively unveils firing coincidences in neural action potentials. My results based on data from six rats revealed that coincidences of pair-wise neural action potentials are higher when rats were performing the task than they were not at the learning stage, and this trend abated after the rats learned the task. Another finding is that the coincidences at the learning stage are stronger than that when the rats learned the task especially when they were performing the task. Therefore, this coincidence measure is the highest when the rats were performing the task at the learning stage. This may suggest that neural coincidences play a role in the coordination and communication among populations of neurons engaged in a purposeful act. Additionally, attention and working memory may have contributed to the modulation of neural coincidences during the designed task.
ContributorsCheng, Bing (Author) / Si, Jennie (Thesis advisor) / Chae, Junseok (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
153006-Thumbnail Image.png
Description
The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation

The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power sources and may alleviate heat trauma and reliability issues that limit practical implementation of existing implantable neurorecorders.
ContributorsSchwerdt, Helen N (Author) / Chae, Junseok (Thesis advisor) / Miranda, Félix A. (Committee member) / Phillips, Stephen (Committee member) / Towe, Bruce C (Committee member) / Balanis, Constantine A (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2014
Description
Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after

Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after activities. Electrical neurostimulation based on the "Gate Theory of Pain" is a known to way to reduce pain but current devices to do this are bulky and not well suited to implantation in peripheral tissues. There is also an increased risk associated with surgery which limits the use of these devices. This research has designed and constructed wireless ultrasound powered microstimulators that are much smaller and injectable and so involve less implantation trauma. These devices are small enough to fit through an 18 gauge syringe needle increasing their potential for clinical use. These piezoelectric microdevices convert mechanical energy into electrical energy that then is used to block pain. The design and performance of these miniaturized devices was modeled by computer while constructed devices were evaluated in animal experiments. The devices are capable of producing 500ms pulses with an intensity of 2 mA into a 2 kilo-ohms load. Using the rat as an animal model, a series of experiments were conducted to evaluate the in-vivo performance of the devices.
ContributorsZong, Xi (Author) / Towe, Bruce (Thesis advisor) / Kleim, Jeffrey (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2014
150204-Thumbnail Image.png
Description
Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by

Programmable metallization cell (PMC) technology is based on an electrochemical phenomenon in which a metallic electrodeposit can be grown or dissolved between two electrodes depending on the voltage applied between them. Devices based on this phenomenon exhibit a unique, self-healing property, as a broken metallic structure can be healed by applying an appropriate voltage between the two broken ends. This work explores methods of fabricating interconnects and switches based on PMC technology on flexible substrates. The objective was the evaluation of the feasibility of using this technology in flexible electronics applications in which reliability is a primary concern. The re-healable property of the interconnect is characterized for the silver doped germanium selenide (Ag-Ge-Se) solid electrolyte system. This property was evaluated by measuring the resistances of the healed interconnect structures and comparing these to the resistances of the unbroken structures. The reliability of the interconnects in both unbroken and healed states is studied by investigating the resistances of the structures to DC voltages, AC voltages and different temperatures as a function of time. This work also explores replacing silver with copper for these interconnects to enhance their reliability. A model for PMC-based switches on flexible substrates is proposed and compared to the observed device behavior with the objective of developing a formal design methodology for these devices. The switches were subjected to voltage sweeps and their resistance was investigated as a function of sweep voltage. The resistance of the switches as a function of voltage pulse magnitude when placed in series with a resistance was also investigated. A model was then developed to explain the behavior of these devices. All observations were based on statistical measurements to account for random errors. The results of this work demonstrate that solid electrolyte based interconnects display self-healing capability, which depends on the applied healing voltage and the current limit. However, they fail at lower current densities than metal interconnects due to an ion-drift induced failure mechanism. The results on the PMC based switches demonstrate that a model comprising a Schottky diode in parallel with a variable resistor predicts the behavior of the device.
ContributorsBaliga, Sunil Ravindranath (Author) / Kozicki, Michael N (Thesis advisor) / Schroder, Dieter K. (Committee member) / Chae, Junseok (Committee member) / Alford, Terry L. (Committee member) / Arizona State University (Publisher)
Created2011
149825-Thumbnail Image.png
Description
In this thesis, I present a lab-on-a-chip (LOC) that can separate and detect Escherichia Coli (E. coli) in simulated urine samples for Urinary Tract Infection (UTI) diagnosis. The LOC consists of two (concentration and sensing) chambers connected in series and an integrated impedance detector. The two-chamber approach is designed to

In this thesis, I present a lab-on-a-chip (LOC) that can separate and detect Escherichia Coli (E. coli) in simulated urine samples for Urinary Tract Infection (UTI) diagnosis. The LOC consists of two (concentration and sensing) chambers connected in series and an integrated impedance detector. The two-chamber approach is designed to reduce the non-specific absorption of proteins, e.g. albumin, that potentially co-exist with E. coli in urine. I directly separate E. coli K-12 from a urine cocktail in a concentration chamber containing micro-sized magnetic beads (5 µm in diameter) conjugated with anti-E. coli antibodies. The immobilized E. coli are transferred to a sensing chamber for the impedance measurement. The measurement at the concentration chamber suffers from non-specific absorption of albumin on the gold electrode, which may lead to a false positive response. By contrast, the measured impedance at the sensing chamber shows ~60 kÙ impedance change between 6.4x104 and 6.4x105 CFU/mL, covering the threshold of UTI (105 CFU/mL). The sensitivity of the LOC for detecting E. coli is characterized to be at least 3.4x104 CFU/mL. I also characterized the LOC for different age groups and white blood cell spiked samples. These preliminary data show promising potential for application in portable LOC devices for UTI detection.
ContributorsKim, Sangpyeong (Author) / Chae, Junseok (Thesis advisor) / Phillips, Stephen M. (Committee member) / Blain Christen, Jennifer M. (Committee member) / Arizona State University (Publisher)
Created2011