Matching Items (29)
Filtering by

Clear all filters

154979-Thumbnail Image.png
Description
This research mainly focuses on improving the utilization of photovoltaic (PV) re-sources in distribution systems by reducing their variability and uncertainty through the integration of distributed energy storage (DES) devices, like batteries, and smart PV in-verters. The adopted theoretical tools include statistical analysis and convex optimization. Operational issues have

This research mainly focuses on improving the utilization of photovoltaic (PV) re-sources in distribution systems by reducing their variability and uncertainty through the integration of distributed energy storage (DES) devices, like batteries, and smart PV in-verters. The adopted theoretical tools include statistical analysis and convex optimization. Operational issues have been widely reported in distribution systems as the penetration of PV resources has increased. Decision-making processes for determining the optimal allo-cation and scheduling of DES, and the optimal placement of smart PV inverters are con-sidered. The alternating current (AC) power flow constraints are used in these optimiza-tion models. The first two optimization problems are formulated as quadratically-constrained quadratic programming (QCQP) problems while the third problem is formu-lated as a mixed-integer QCQP (MIQCQP) problem. In order to obtain a globally opti-mum solution to these non-convex optimization problems, convex relaxation techniques are introduced. Considering that the costs of the DES are still very high, a procedure for DES sizing based on OpenDSS is proposed in this research to avoid over-sizing.

Some existing convex relaxations, e.g. the second order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation, which have been well studied for the optimal power flow (OPF) problem work unsatisfactorily for the DES and smart inverter optimization problems. Several convex constraints that can approximate the rank-1 constraint X = xxT are introduced to construct a tighter SDP relaxation which is referred to as the enhanced SDP (ESDP) relaxation using a non-iterative computing framework. Obtaining the convex hull of the AC power flow equations is beneficial for mitigating the non-convexity of the decision-making processes in power systems, since the AC power flow constraints exist in many of these problems. The quasi-convex hull of the quadratic equalities in the AC power bus injection model (BIM) and the exact convex hull of the quadratic equality in the AC power branch flow model (BFM) are proposed respectively in this thesis. Based on the convex hull of BFM, a novel convex relaxation of the DES optimizations is proposed. The proposed approaches are tested on a real world feeder in Arizona and several benchmark IEEE radial feeders.
ContributorsLi, Qifeng (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Committee member) / Mittelmann, Hans D (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016
155012-Thumbnail Image.png
Description
This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment made in the FREEDM distribution system. The stochastic study will

This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment made in the FREEDM distribution system. The stochastic study will help in performing a detailed analysis in estimating the probability density function and statistics associated with the payback period.

This thesis also identifies several parameters associated with the FREEDM system, which are used in the cost benefit study to evaluate the investment and several direct and indirect benefits. Different topologies are selected to represent the FREEDM test bed. Considering the cost of high speed fault isolation devices, the topology design is selected based on the minimum number of fault isolation devices constrained by enhanced reliability. A case study is also performed to assess the economic impact of energy storage devices in the solid state transformers so that the fault isolation devices may be replaced by conventional circuit breakers.

A reliability study is conducted on the FREEDM distribution system to examine the customer centric reliability index, System Average Interruption Frequency Index (SAIFI). It is observed that the SAIFI was close to 0.125 for the FREEDM distribution system. In addition, a comparison study is performed based on the SAIFI for a representative U.S. distribution system and the FREEDM distribution system.

The payback period is also determined by adopting a theoretical approach and the results are compared with the Monte Carlo simulation outcomes to understand the variation in the payback period. It is observed that the payback period is close to 60 years but if an annual rebate is considered, the payback period reduces to 20 years. This shows that the FREEDM system has a significant potential which cannot be overlooked. Several direct and indirect benefits arising from the FREEDM system have also been discussed in this thesis.
ContributorsDinakar, Abhishek (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016
152884-Thumbnail Image.png
Description
With the power system being increasingly operated near its limits, there is an increasing need for a power-flow (PF) solution devoid of convergence issues. Traditional iterative methods are extremely initial-estimate dependent and not guaranteed to converge to the required solution. Holomorphic Embedding (HE) is a novel non-iterative procedure for solving

With the power system being increasingly operated near its limits, there is an increasing need for a power-flow (PF) solution devoid of convergence issues. Traditional iterative methods are extremely initial-estimate dependent and not guaranteed to converge to the required solution. Holomorphic Embedding (HE) is a novel non-iterative procedure for solving the PF problem. While the theory behind a restricted version of the method is well rooted in complex analysis, holomorphic functions and algebraic curves, the practical implementation of the method requires going beyond the published details and involves numerical issues related to Taylor's series expansion, Padé approximants, convolution and solving linear matrix equations.

The HE power flow was developed by a non-electrical engineer with language that is foreign to most engineers. One purpose of this document to describe the approach using electric-power engineering parlance and provide an understanding rooted in electric power concepts. This understanding of the methodology is gained by applying the approach to a two-bus dc PF problem and then gradually from moving from this simple two-bus dc PF problem to the general ac PF case.

Software to implement the HE method was developed using MATLAB and numerical tests were carried out on small and medium sized systems to validate the approach. Implementation of different analytic continuation techniques is included and their relevance in applications such as evaluating the voltage solution and estimating the bifurcation point (BP) is discussed. The ability of the HE method to trace the PV curve of the system is identified.
ContributorsSubramanian, Muthu Kumar (Author) / Tylavsky, Daniel J (Thesis advisor) / Undrill, John M (Committee member) / Heydt, Gerald T (Committee member) / Arizona State University (Publisher)
Created2014
153184-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy

This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies.

For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated.

The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions.

One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.
ContributorsDixon, William Jesse J (Author) / Heydt, Gerald T (Thesis advisor) / Hedman, Kory W (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
153066-Thumbnail Image.png
Description
There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution

There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution system. However, high penetration of PV resources can give rise to operating conditions which do not arise in traditional systems and one of the potential issues that needs to be addressed involves impact on power quality of the system with respect to the spectral distortion in voltages and currents.

The test bed feeder model representing a real operational distribution feeder is developed in OpenDSS and the feeder modeling takes into consideration the ob-jective of analysis and frequency of interest. Extensive metering infrastructure and measurements are utilized for validation of the model at harmonic frequencies. The harmonic study performed is divided into two sections: study of impact of non-linear loads on total harmonic voltage and current distortions and study of impact of PV resources on high frequency spectral distortion in voltages and cur-rents. The research work incorporates different harmonic study methodologies such as harmonic and high frequency power flow, and frequency scan study. The general conclusions are presented based on the simulation results and in addition, scope for future work is discussed.
ContributorsJoshi, Titiksha Vjay (Author) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2014
153117-Thumbnail Image.png
Description
The safety issue in an electrical power distribution system is of critical importance. In some circumstances, even the continuity of service has to be compromised for a situation that can cause a hazard to the public. A downed conductor that creates an electrical path between a current carrying conductor and

The safety issue in an electrical power distribution system is of critical importance. In some circumstances, even the continuity of service has to be compromised for a situation that can cause a hazard to the public. A downed conductor that creates an electrical path between a current carrying conductor and ground pose a potential lethal hazard to anyone in the near proximity. Electric utilities have yet to find a fully accepted and reliable method for detecting downed conductors even with decades of research.

With the entry of more automation and a smarter grid in the different layers of distribution power system supply, new doors are being opened and new feasible solutions are waiting to be explored. The 'big data' and the infrastructures that are readily accessible through the smart metering system is the base of the work and analysis performed in this thesis. In effect, the new technologies and new solutions are an artifact of the Smart Grid effort which has now reached worldwide dimensions. A solution to problems of overhead distribution conductor failures / faults that use simple methods and that are easy to implement using existing and future distribution management systems is presented.

A European type distribution system using three phase supply is utilized as the test bed for the concepts presented. Fault analysis is performed on the primary and the secondary distribution system using the free downloadable software OpenDSS. The outcome is a set of rules that can be implemented either locally or central using a voltage based method. Utilized in the distribution management systems the operators will be given a powerful tool to make the correct action when a situation occurs. The test bed itself is taken from an actual system in Norway.
ContributorsAbusdal, Geir Magne (Author) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Heydt, George (Committee member) / Arizona State University (Publisher)
Created2014
153235-Thumbnail Image.png
Description
The objective of this thesis is to detect certain cyber attacks in a power distribution ener-gy management system in a Smart Grid infrastructure. In the Smart Grid, signals are sent be-tween the distribution operator and the customer on a real-time basis. Signals are used for auto-mated energy management, protection and

The objective of this thesis is to detect certain cyber attacks in a power distribution ener-gy management system in a Smart Grid infrastructure. In the Smart Grid, signals are sent be-tween the distribution operator and the customer on a real-time basis. Signals are used for auto-mated energy management, protection and energy metering. This thesis aims at making use of various signals in the system to detect cyber attacks. The focus of the thesis is on a cyber attack that changes the parameters of the energy management system. The attacks considered change the set points, thresholds for energy management decisions, signal multipliers, and other digitally stored parameters that ultimately determine the transfer functions of the components. Since the distribution energy management system is assumed to be in a Smart Grid infrastructure, customer demand is elastic to the price of energy. The energy pricing is represented by a distribution loca-tional marginal price. A closed loop control system is utilized as representative of the energy management system. Each element of the system is represented by a linear transfer function. Studies are done via simulations and these simulations are performed in Matlab SimuLink. The analytical calculations are done using Matlab.

Signals from the system are used to obtain the frequency response of the component transfer functions. The magnitude and phase angle of the transfer functions are obtained using the fast Fourier transform. The transfer function phase angles of base cases (no attack) are stored and are compared with the phase angles calculated at regular time intervals. If the difference in the phase characteristics is greater than a set threshold, an alarm is issued indicating the detection of a cyber attack.

The developed algorithm is designed for use in the envisioned Future Renewable Electric Energy Delivery and Management (FREEDM) system. Examples are shown for the noise free and noisy cases.
ContributorsRavi, Vaithinathan (Author) / Heydt, Gerald T (Thesis advisor) / Karady, George G. (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2014
155815-Thumbnail Image.png
Description
With the penetration of distributed renewable energy and the development of

semiconductor technology, power electronic devices could be utilized to interface re-

newable energy generation and the distribution power grid. However, when directly

connected to the power grid, the semiconductors inside the power electronic devices

could be vulnerable to the power system transient, especially

With the penetration of distributed renewable energy and the development of

semiconductor technology, power electronic devices could be utilized to interface re-

newable energy generation and the distribution power grid. However, when directly

connected to the power grid, the semiconductors inside the power electronic devices

could be vulnerable to the power system transient, especially to lightning strikes.

The work of this research focuses on the insulation coordination of power elec-

tronic devices connected directly to the power distribution system. The Solid State

Transformer (SST) in Future Renewable Electric Energy Delivery and Management

(FREEDM) system could be a good example for grid connected power electronic

devices. Simulations were conducted in Power Systems Computer Aided Design

(PSCAD) software. A simulation done to the FREEDM SST showed primary re-

sults which were then compare to simulation done to the grid-connected operating

Voltage Source Converter (VSC) to get more objective results.

Based on the simulation results, voltage surges caused by lightning strikes could

result in damage on the grid-connected electronic devices. Placing Metal Oxide Surge

Arresers (MOSA, also known as Metal Oxide Surge Varistor, MOV) at the front lter

could provide eective protection for those devices from power transient. Part of this

research work was published as a conference paper and was presented at CIGRE US

National Conference: Grid of the Future Symposium [1] and North American Power

Symposium [2].
ContributorsRong, Xuening (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2017
153496-Thumbnail Image.png
Description
An important operating aspect of all transmission systems is power system stability

and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level

An important operating aspect of all transmission systems is power system stability

and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level but photovoltaic solar generation is at a high level. Significant solar photovoltaic penetration as a renewable resource is becoming a reality in some electric power systems. In this thesis, special attention is given to photovoltaic generation in an actual electric power system: increased solar penetration has resulted in significant strides towards meeting renewable portfolio standards. The impact of solar generation integration on power system dynamics is studied and evaluated.

This thesis presents the impact of high solar penetration resulting in potentially

problematic low system damping operating conditions. This is the case because the power system damping provided by conventional generation may be insufficient due to reduced system inertia and change in power flow patterns affecting synchronizing and damping capability in the AC system. This typically occurs because conventional generators are rescheduled or shut down to allow for the increased solar production. This problematic case may occur at any time of the year but during the springtime months of March-May, when the system load is low and the ambient temperature is relatively low, there is the potential that over voltages may occur in the high voltage transmission system. Also, reduced damping in system response to disturbances may occur. An actual case study is considered in which real operating system data are used. Solutions to low damping cases are discussed and a solution based on the retuning of a conventional power system stabilizer is given in the thesis.
ContributorsPethe, Anushree Sanjeev (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015