Matching Items (31)
Filtering by

Clear all filters

151475-Thumbnail Image.png
Description
The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. There is thus a need to develop a new network science for modeling and quantifying cascading failures in multiple interdependent networks, and to develop network management algorithms that improve network robustness and ensure overall network reliability against cascading failures. To enhance the system robustness, a "regular" allocation strategy is proposed that yields better resistance against cascading failures compared to all possible existing strategies. Furthermore, in view of the load redistribution feature in many physical infrastructure networks, e.g., power grids, a CPS model is developed where the threshold model and the giant connected component model are used to capture the node failures in the physical infrastructure network and the cyber network, respectively. The second thrust is centered around the information dynamics in the CPS. One speculation is that the interconnections over multiple networks can facilitate information diffusion since information propagation in one network can trigger further spread in the other network. With this insight, a theoretical framework is developed to analyze information epidemic across multiple interconnecting networks. It is shown that the conjoining among networks can dramatically speed up message diffusion. Along a different avenue, many cyber-physical systems rely on wireless networks which offer platforms for information exchanges. To optimize the QoS of wireless networks, there is a need to develop a high-throughput and low-complexity scheduling algorithm to control link dynamics. To that end, distributed link scheduling algorithms are explored for multi-hop MIMO networks and two CSMA algorithms under the continuous-time model and the discrete-time model are devised, respectively.
ContributorsQian, Dajun (Author) / Zhang, Junshan (Thesis advisor) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Cochran, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
151324-Thumbnail Image.png
Description
A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is traditionally known to be intractable or computationally expensive to implement. First, real-time scheduling with adaptive network coding over memoryless channels is studied, and a polynomial-time complexity algorithm is developed to characterize the optimal real-time scheduling. Then, real-time scheduling over Markovian channels is investigated, where channel conditions are time-varying and online channel learning is necessary, and the optimal scheduling policies in different traffic regimes are studied. The second part focuses on the stochastic optimization and real-time scheduling involved in energy systems. First, risk-aware scheduling and dispatch for plug-in electric vehicles (EVs) are studied, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecasted and the actual EV loads, due to the random driving activities of EVs. Then, the integration of wind generation at high penetration levels into bulk power grids is considered. Joint optimization of economic dispatch and interruptible load management is investigated using short-term wind farm generation forecast. The third part studies stochastic optimization in distributed control systems under different network environments. First, distributed spectrum access in cognitive radio networks is investigated by using pricing approach, where primary users (PUs) sell the temporarily unused spectrum and secondary users compete via random access for such spectrum opportunities. The optimal pricing strategy for PUs and the corresponding distributed implementation of spectrum access control are developed to maximize the PU's revenue. Then, a systematic study of the nonconvex utility-based power control problem is presented under the physical interference model in ad-hoc networks. Distributed power control schemes are devised to maximize the system utility, by leveraging the extended duality theory and simulated annealing.
ContributorsYang, Lei (Author) / Zhang, Junshan (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Xue, Guoliang (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2012
152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
ContributorsZhou, Shan (Author) / Ying, Lei (Thesis advisor) / Zhang, Yanchao (Committee member) / Zhang, Junshan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2013
156751-Thumbnail Image.png
Description
In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at

In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at risk and also lead to user reluctance in accepting services or sharing data. This dissertation first investigates privacy sensitive consumer-retailers/service providers interactions under different scenarios, and then focuses on a unified framework for various information-theoretic privacy and privacy mechanisms that can be learned directly from data.

Existing approaches such as differential privacy or information-theoretic privacy try to quantify privacy risk but do not capture the subjective experience and heterogeneous expression of privacy-sensitivity. The first part of this dissertation introduces models to study consumer-retailer interaction problems and to better understand how retailers/service providers can balance their revenue objectives while being sensitive to user privacy concerns. This dissertation considers the following three scenarios: (i) the consumer-retailer interaction via personalized advertisements; (ii) incentive mechanisms that electrical utility providers need to offer for privacy sensitive consumers with alternative energy sources; (iii) the market viability of offering privacy guaranteed free online services. We use game-theoretic models to capture the behaviors of both consumers and retailers, and provide insights for retailers to maximize their profits when interacting with privacy sensitive consumers.

Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. In the second part, a novel context-aware privacy framework called generative adversarial privacy (GAP) is introduced. Inspired by recent advancements in generative adversarial networks, GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. For appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. Both synthetic and real-world datasets are used to show that GAP can greatly reduce the adversary's capability of inferring private information at a small cost of distorting the data.
ContributorsHuang, Chong (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Committee member) / Nedich, Angelia (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018
156796-Thumbnail Image.png
Description
Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.
ContributorsChen, Yimin (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018
154049-Thumbnail Image.png
Description
A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. The partitioning

A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. The partitioning of a large WMN into several smaller WMN clusters, whereby each cluster is served by an Optical Network Unit (ONU) of the PON, is examined. Existing WMN throughput-delay analysis techniques considering the mean load of the nodes at a given hop distance from a gateway (ONU) are unsuitable for the heterogeneous nodal traffic loads arising from clustering. A simple analytical queuing model that considers the individual node loads to accurately characterize the throughput-delay performance of a clustered FiWi network is introduced. The accuracy of the model is verified through extensive simulations. It is found that with sufficient PON bandwidth, clustering substantially improves the FiWi network throughput-delay performance by employing the model to examine the impact of the number of clusters on the network throughput-delay performance. Different traffic models and network designs are also studied to improve the FiWi network performance.
ContributorsChen, Po-Yen (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Committee member) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
154767-Thumbnail Image.png
Description
Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due

Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due to its massive user engagement and structural openness. Although existed, little is still known in the community about new types of vulnerabilities in current microblogging services which could be leveraged by the intelligence-evolving attackers, and more importantly, the corresponding defenses that could prevent both the users and the microblogging service providers from being attacked. This dissertation aims to uncover a number of challenging security and privacy issues in microblogging services and also propose corresponding defenses.

This dissertation makes fivefold contributions. The first part presents the social botnet, a group of collaborative social bots under the control of a single botmaster, demonstrate the effectiveness and advantages of exploiting a social botnet for spam distribution and digital-influence manipulation, and propose the corresponding countermeasures and evaluate their effectiveness. Inspired by Pagerank, the second part describes TrueTop, the first sybil-resilient system to find the top-K influential users in microblogging services with very accurate results and strong resilience to sybil attacks. TrueTop has been implemented to handle millions of nodes and 100 times more edges on commodity computers. The third and fourth part demonstrate that microblogging systems' structural openness and users' carelessness could disclose the later's sensitive information such as home city and age. LocInfer, a novel and lightweight system, is presented to uncover the majority of the users in any metropolitan area; the dissertation also proposes MAIF, a novel machine learning framework that leverages public content and interaction information in microblogging services to infer users' hidden ages. Finally, the dissertation proposes the first privacy-preserving social media publishing framework to let the microblogging service providers publish their data to any third-party without disclosing users' privacy and meanwhile meeting the data's commercial utilities. This dissertation sheds the light on the state-of-the-art security and privacy issues in the microblogging services.
ContributorsZhang, Jinxue (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Ying, Lei (Committee member) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2016
154152-Thumbnail Image.png
Description
Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient resource-allocation algorithms is, however, becoming more and more challenging due

Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient resource-allocation algorithms is, however, becoming more and more challenging due to the precipitously increasing scale of the networks. This thesis strives to understand how to design such low-complexity algorithms with performance guarantees.

In the first part, the link scheduling problem in wireless ad hoc networks is considered. The scheduler is charge of finding a set of wireless data links to activate at each time slot with the considerations of wireless interference, traffic dynamics, network topology and quality-of-service (QoS) requirements. Two different yet essential scenarios are investigated: the first one is when each packet has a specific deadline after which it will be discarded; the second is when each packet traverses the network in multiple hops instead of leaving the network after a one-hop transmission. In both scenarios the links need to be carefully scheduled to avoid starvation of users and congestion on links. One greedy algorithm is analyzed in each of the two scenarios and performance guarantees in terms of throughput of the networks are derived.

In the second part, the load-balancing problem in parallel computing is studied. Tasks arrive in batches and the duty of the load balancer is to place the tasks on the machines such that minimum queueing delay is incurred. Due to the huge size of modern data centers, sampling the status of all machines may result in significant overhead. Consequently, an algorithm based on limited queue information at the machines is examined and its asymptotic delay performance is characterized and it is shown that the proposed algorithm achieves the same delay with remarkably less sampling overhead compared to the well-known power-of-two-choices algorithm.

Two messages of the thesis are the following: greedy algorithms can work well in a stochastic setting; the fluid model can be useful in "derandomizing" the system and reveal the nature of the algorithm.
ContributorsKang, Xiaohan (Author) / Ying, Lei (Thesis advisor) / Cochran, Douglas (Committee member) / Dai, Jim (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2015
154895-Thumbnail Image.png
Description
Data privacy is emerging as one of the most serious concerns of big data analytics, particularly with the growing use of personal data and the ever-improving capability of data analysis. This dissertation first investigates the relation between different privacy notions, and then puts the main focus on developing economic foundations

Data privacy is emerging as one of the most serious concerns of big data analytics, particularly with the growing use of personal data and the ever-improving capability of data analysis. This dissertation first investigates the relation between different privacy notions, and then puts the main focus on developing economic foundations for a market model of trading private data.

The first part characterizes differential privacy, identifiability and mutual-information privacy by their privacy--distortion functions, which is the optimal achievable privacy level as a function of the maximum allowable distortion. The results show that these notions are fundamentally related and exhibit certain consistency: (1) The gap between the privacy--distortion functions of identifiability and differential privacy is upper bounded by a constant determined by the prior. (2) Identifiability and mutual-information privacy share the same optimal mechanism. (3) The mutual-information optimal mechanism satisfies differential privacy with a level at most a constant away from the optimal level.

The second part studies a market model of trading private data, where a data collector purchases private data from strategic data subjects (individuals) through an incentive mechanism. The value of epsilon units of privacy is measured by the minimum payment such that an individual's equilibrium strategy is to report data in an epsilon-differentially private manner. For the setting with binary private data that represents individuals' knowledge about a common underlying state, asymptotically tight lower and upper bounds on the value of privacy are established as the number of individuals becomes large, and the payment--accuracy tradeoff for learning the state is obtained. The lower bound assures the impossibility of using lower payment to buy epsilon units of privacy, and the upper bound is given by a designed reward mechanism. When the individuals' valuations of privacy are unknown to the data collector, mechanisms with possible negative payments (aiming to penalize individuals with "unacceptably" high privacy valuations) are designed to fulfill the accuracy goal and drive the total payment to zero. For the setting with binary private data following a general joint probability distribution with some symmetry, asymptotically optimal mechanisms are designed in the high data quality regime.
ContributorsWang, Weina (Author) / Ying, Lei (Thesis advisor) / Zhang, Junshan (Thesis advisor) / Scaglione, Anna (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2016
155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016