Matching Items (52)
Filtering by

Clear all filters

158513-Thumbnail Image.png
Description
This dissertation studies the scheduling in two stochastic networks, a co-located wireless network and an outpatient healthcare network, both of which have a cyclic planning horizon and a deadline-related performance metric.

For the co-located wireless network, a time-slotted system is considered. A cycle of planning horizon is called a frame,

This dissertation studies the scheduling in two stochastic networks, a co-located wireless network and an outpatient healthcare network, both of which have a cyclic planning horizon and a deadline-related performance metric.

For the co-located wireless network, a time-slotted system is considered. A cycle of planning horizon is called a frame, which consists of a fixed number of time slots. The size of the frame is determined by the upper-layer applications. Packets with deadlines arrive at the beginning of each frame and will be discarded if missing their deadlines, which are in the same frame. Each link of the network is associated with a quality of service constraint and an average transmit power constraint. For this system, a MaxWeight-type problem for which the solutions achieve the throughput optimality is formulated. Since the computational complexity of solving the MaxWeight-type problem with exhaustive search is exponential even for a single-link system, a greedy algorithm with complexity O(nlog(n)) is proposed, which is also throughput optimal.

The outpatient healthcare network is modeled as a discrete-time queueing network, in which patients receive diagnosis and treatment planning that involves collaboration between multiple service stations. For each patient, only the root (first) appointment can be scheduled as the following appointments evolve stochastically. The cyclic planing horizon is a week. The root appointment is optimized to maximize the proportion of patients that can complete their care by a class-dependent deadline. In the optimization algorithm, the sojourn time of patients in the healthcare network is approximated with a doubly-stochastic phase-type distribution. To address the computational intractability, a mean-field model with convergence guarantees is proposed. A linear programming-based policy improvement framework is developed, which can approximately solve the original large-scale stochastic optimization in queueing networks of realistic sizes.
ContributorsLiu, Yiqiu (Author) / Ying, Lei (Thesis advisor) / Shi, Pengyi (Committee member) / Wang, Weina (Committee member) / Zhang, Junshan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2020
158716-Thumbnail Image.png
Description
The availability of data for monitoring and controlling the electrical grid has increased exponentially over the years in both resolution and quantity leaving a large data footprint. This dissertation is motivated by the need for equivalent representations of grid data in lower-dimensional feature spaces so that

The availability of data for monitoring and controlling the electrical grid has increased exponentially over the years in both resolution and quantity leaving a large data footprint. This dissertation is motivated by the need for equivalent representations of grid data in lower-dimensional feature spaces so that machine learning algorithms can be employed for a variety of purposes. To achieve that, without sacrificing the interpretation of the results, the dissertation leverages the physics behind power systems, well-known laws that underlie this man-made infrastructure, and the nature of the underlying stochastic phenomena that define the system operating conditions as the backbone for modeling data from the grid.

The first part of the dissertation introduces a new framework of graph signal processing (GSP) for the power grid, Grid-GSP, and applies it to voltage phasor measurements that characterize the overall system state of the power grid. Concepts from GSP are used in conjunction with known power system models in order to highlight the low-dimensional structure in data and present generative models for voltage phasors measurements. Applications such as identification of graphical communities, network inference, interpolation of missing data, detection of false data injection attacks and data compression are explored wherein Grid-GSP based generative models are used.

The second part of the dissertation develops a model for a joint statistical description of solar photo-voltaic (PV) power and the outdoor temperature which can lead to better management of power generation resources so that electricity demand such as air conditioning and supply from solar power are always matched in the face of stochasticity. The low-rank structure inherent in solar PV power data is used for forecasting and to detect partial-shading type of faults in solar panels.
ContributorsRamakrishna, Raksha (Author) / Scaglione, Anna (Thesis advisor) / Cochran, Douglas (Committee member) / Spanias, Andreas (Committee member) / Vittal, Vijay (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2020
158139-Thumbnail Image.png
Description
Modern digital applications have significantly increased the leakage of private and sensitive personal data. While worst-case measures of leakage such as Differential Privacy (DP) provide the strongest guarantees, when utility matters, average-case information-theoretic measures can be more relevant. However, most such information-theoretic measures do not have clear operational meanings. This

Modern digital applications have significantly increased the leakage of private and sensitive personal data. While worst-case measures of leakage such as Differential Privacy (DP) provide the strongest guarantees, when utility matters, average-case information-theoretic measures can be more relevant. However, most such information-theoretic measures do not have clear operational meanings. This dissertation addresses this challenge.

This work introduces a tunable leakage measure called maximal $\alpha$-leakage which quantifies the maximal gain of an adversary in inferring any function of a data set. The inferential capability of the adversary is modeled by a class of loss functions, namely, $\alpha$-loss. The choice of $\alpha$ determines specific adversarial actions ranging from refining a belief for $\alpha =1$ to guessing the best posterior for $\alpha = \infty$, and for the two specific values maximal $\alpha$-leakage simplifies to mutual information and maximal leakage, respectively. Maximal $\alpha$-leakage is proved to have a composition property and be robust to side information.

There is a fundamental disjoint between theoretical measures of information leakages and their applications in practice. This issue is addressed in the second part of this dissertation by proposing a data-driven framework for learning Censored and Fair Universal Representations (CFUR) of data. This framework is formulated as a constrained minimax optimization of the expected $\alpha$-loss where the constraint ensures a measure of the usefulness of the representation. The performance of the CFUR framework with $\alpha=1$ is evaluated on publicly accessible data sets; it is shown that multiple sensitive features can be effectively censored to achieve group fairness via demographic parity while ensuring accuracy for several \textit{a priori} unknown downstream tasks.

Finally, focusing on worst-case measures, novel information-theoretic tools are used to refine the existing relationship between two such measures, $(\epsilon,\delta)$-DP and R\'enyi-DP. Applying these tools to the moments accountant framework, one can track the privacy guarantee achieved by adding Gaussian noise to Stochastic Gradient Descent (SGD) algorithms. Relative to state-of-the-art, for the same privacy budget, this method allows about 100 more SGD rounds for training deep learning models.
ContributorsLiao, Jiachun (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Committee member) / Zhang, Junshan (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2020
157976-Thumbnail Image.png
Description
The open nature of the wireless communication medium makes it inherently vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits into the medium to disrupt the operation of the legitimate users. Therefore, developing techniques to manage the presence of a jammer and to characterize the effect of

The open nature of the wireless communication medium makes it inherently vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits into the medium to disrupt the operation of the legitimate users. Therefore, developing techniques to manage the presence of a jammer and to characterize the effect of an attacker on the fundamental limits of wireless communication networks is important. This dissertation studies various Gaussian communication networks in the presence of such an adversarial jammer.

First of all, a standard Gaussian channel is considered in the presence of a jammer, known as a Gaussian arbitrarily-varying channel, but with list-decoding at the receiver. The receiver decodes a list of messages, instead of only one message, with the goal of the correct message being an element of the list. The capacity is characterized, and it is shown that under some transmitter's power constraints the adversary is able to suspend the communication between the legitimate users and make the capacity zero.

Next, generalized packing lemmas are introduced for Gaussian adversarial channels to achieve the capacity bounds for three Gaussian multi-user channels in the presence of adversarial jammers. Inner and outer bounds on the capacity regions of Gaussian multiple-access channels, Gaussian broadcast channels, and Gaussian interference channels are derived in the presence of malicious jammers. For the Gaussian multiple-access channels with jammer, the capacity bounds coincide. In this dissertation, the adversaries can send any arbitrary signals to the channel while none of the transmitter and the receiver knows the adversarial signals' distribution.

Finally, the capacity of the standard point-to-point Gaussian fading channel in the presence of one jammer is investigated under multiple scenarios of channel state information availability, which is the knowledge of exact fading coefficients. The channel state information is always partially or fully known at the receiver to decode the message while the transmitter or the adversary may or may not have access to this information. Here, the adversary model is the same as the previous cases with no knowledge about the user's transmitted signal except possibly the knowledge of the fading path.
ContributorsHosseinigoki, Fatemeh (Author) / Kosut, Oliver (Thesis advisor) / Zhang, Junshan (Committee member) / Sankar, Lalitha (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2019
157816-Thumbnail Image.png
Description
This dissertation studies load balancing algorithms for many-server systems (with N servers) and focuses on the steady-state performance of load balancing algorithms in the heavy traffic regime. The framework of Stein’s method and (iterative) state-space collapse (SSC) are used to analyze three load balancing systems: 1) load balancing in the

This dissertation studies load balancing algorithms for many-server systems (with N servers) and focuses on the steady-state performance of load balancing algorithms in the heavy traffic regime. The framework of Stein’s method and (iterative) state-space collapse (SSC) are used to analyze three load balancing systems: 1) load balancing in the Sub-Halfin-Whitt regime with exponential service time; 2) load balancing in the Beyond-Halfin-Whitt regime with exponential service time; 3) load balancing in the Sub-Halfin-Whitt regime with Coxian-2 service time.

When in the Sub-Halfin-Whitt regime, the sufficient conditions are established such that any load balancing algorithm that satisfies the conditions have both asymptotic zero waiting time and zero waiting probability. Furthermore, the number of servers with more than one jobs is o(1), in other words, the system collapses to a one-dimensional space. The result is proven using Stein’s method and state space collapse (SSC), which are powerful mathematical tools for steady-state analysis of load balancing algorithms. The second system is in even “heavier” traffic regime, and an iterative refined procedure is proposed to obtain the steady-state metrics. Again, asymptotic zero delay and waiting are established for a set of load balancing algorithms. Different from the first system, the system collapses to a two-dimensional state-space instead of one-dimensional state-space. The third system is more challenging because of “non-monotonicity” with Coxian-2 service time, and an iterative state space collapse is proposed to tackle the “non-monotonicity” challenge. For these three systems, a set of load balancing algorithms is established, respectively, under which the probability that an incoming job is routed to an idle server is one asymptotically at steady-state. The set of load balancing algorithms includes join-the-shortest-queue (JSQ), idle-one-first(I1F), join-the-idle-queue (JIQ), and power-of-d-choices (Pod) with a carefully-chosen d.
ContributorsLiu, Xin (Author) / Ying, Lei (Thesis advisor) / Maguluri, Siva Theja (Committee member) / Wang, Weina (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2019
158763-Thumbnail Image.png
Description
The first half of this dissertation introduces a minimum cost incentive mechanism for collecting discrete distributed private data for big-data analysis. The goal of an incentive mechanism is to incentivize informative reports and make sure randomization in the reported data does not exceed a target level. It answers two fundamental

The first half of this dissertation introduces a minimum cost incentive mechanism for collecting discrete distributed private data for big-data analysis. The goal of an incentive mechanism is to incentivize informative reports and make sure randomization in the reported data does not exceed a target level. It answers two fundamental questions: what is the minimum payment required to incentivize an individual to submit data with quality level $\epsilon$? and what incentive mechanisms can achieve the minimum payment? A lower bound on the minimum amount of payment required for guaranteeing quality level $\epsilon$ is derived. Inspired by the lower bound, our incentive mechanism (WINTALL) first decides a winning answer based on reported data, then pays to individuals whose reported data match the winning answer. The expected payment of WINTALL matches lower bound asymptotically. Real-world experiments on Amazon Mechanical Turk are presented to further illustrate novelty of the principle behind WINTALL.

The second half studies problem of iterative training in Federated Learning. A system with a single parameter server and $M$ client devices is considered for training a predictive learning model with distributed data. The clients communicate with the parameter server using a common wireless channel so each time, only one device can transmit. The training is an iterative process consisting of multiple rounds. Adaptive training is considered where the parameter server decides when to stop/restart a new round, so the problem is formulated as an optimal stopping problem. While this optimal stopping problem is difficult to solve, a modified optimal stopping problem is proposed. Then a low complexity algorithm is introduced to solve the modified problem, which also works for the original problem. Experiments on a real data set shows significant improvements compared with policies collecting a fixed number of updates in each iteration.
ContributorsJiang, Pengfei (Author) / Ying, Lei (Thesis advisor) / Zhang, Junshan (Committee member) / Zhang, Yanchao (Committee member) / Wang, Weina (Committee member) / Arizona State University (Publisher)
Created2020
158599-Thumbnail Image.png
Description
This dissertation presents a novel algorithm for recovering missing values of co-evolving time series with partial embedded network information. The idea is to connect two sources of data through a shared low dimensional latent space. The proposed algorithm, named NetDyna, is an Expectation-Maximization algorithm, and uses the Kalman filter and

This dissertation presents a novel algorithm for recovering missing values of co-evolving time series with partial embedded network information. The idea is to connect two sources of data through a shared low dimensional latent space. The proposed algorithm, named NetDyna, is an Expectation-Maximization algorithm, and uses the Kalman filter and matrix factorization approaches to infer the missing values both in the time series and embedded network. The experimental results on real datasets, including a Motes dataset and a Motion Capture dataset, show that (1) NetDyna outperforms other state-of-the-art algorithms, especially with partially observed network information; (2) its computational complexity scales linearly with the time duration of time series; and (3) the algorithm recovers the embedded network in addition to missing time series values.

This dissertation also studies a load balancing algorithm, the so called power-of-two-choices(Po2), for many-server systems (with N servers) and focuses on the convergence of stationary distribution of Po2 in the both light and heavy traffic regimes to the solution of mean-field system. The framework of Stein’s method and state space collapse (SSC) are used to analyze both regimes.

In both regimes, the thesis first uses the argument of state space collapse to show that the probability of the state being far from the mean-field solution is small enough. By a simple Markov inequality, it is able to show that the probability is indeed very small with a proper choice of parameters.

Then, for the state space close to the solution of mean-field model, the thesis uses Stein’s method to show that the stochastic system is close to a linear mean-field model. By characterizing the generator difference, it is able to characterize the dominant terms in both regimes. Note that for heavy traffic case, the lower and upper bound analysis of a tridiagonal matrix, which arises from the linear mean-field model, is needed. From the dominant term, it allows to calculate the coefficient of the convergence rate.

In the end, comparisons between the theoretical predictions and numerical simulations are presented.
ContributorsHairi, FNU (Author) / Ying, Lei (Thesis advisor) / Wang, Weina (Committee member) / Zhang, Junshan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2020
158388-Thumbnail Image.png
Description
The electric power system (EPS) is an extremely complex system that has operational interdependencies with the water delivery and treatment system (WDTS). The term water-energy nexus is commonly used to describe the critical interdependencies that naturally exist between the EPS and water distribution systems (WDS). Presented in this work is

The electric power system (EPS) is an extremely complex system that has operational interdependencies with the water delivery and treatment system (WDTS). The term water-energy nexus is commonly used to describe the critical interdependencies that naturally exist between the EPS and water distribution systems (WDS). Presented in this work is a framework for simulating interactions between these two critical infrastructure systems in short-term and long-term time-scales. This includes appropriate mathematical models for system modeling and for optimizing control of power system operation with consideration of conditions in the WDS. Also presented is a complete methodology for quantifying the resilience of the two interdependent systems.

The key interdependencies between the two systems are the requirements of water for the cooling cycle of traditional thermal power plants as well as electricity for pumping and/or treatment in the WDS. While previous work has considered the dependency of thermoelectric generation on cooling water requirements at a high-level, this work considers the impact from limitations of cooling water into network simulations in both a short-term operational framework as well as in the long-term planning domain.

The work completed to set-up simulations in operational length time-scales was the development of a simulator that adequately models both systems. This simulation engine also facilitates the implementation of control schemes in both systems that take advantage of the knowledge of operating conditions in the other system. Initial steps for including the influence of anticipated water availability and water rights attainability within the combined generation and transmission expansion planning problem is also presented. Lastly, the framework for determining the infrastructural-operational resilience (IOR) of the interdependent systems is formulated.

Adequately modeling and studying the two systems and their interactions is becoming critically important. This importance is illustrated by the possibility of unforeseen natural or man-made events or by the likelihood of load increase in the systems, either of which has the risk of putting extreme stress on the systems beyond that experienced in normal operating conditions. Therefore, this work addresses these concerns with novel modeling and control/policy strategies designed to mitigate the severity of extreme conditions in either system.
ContributorsZuloaga, Scott (Author) / Vittal, Vijay (Thesis advisor) / Zhang, Junshan (Committee member) / Mays, Larry (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2020
161788-Thumbnail Image.png
Description
Collision-free path planning is also a major challenge in managing unmanned aerial vehicles (UAVs) fleets, especially in uncertain environments. The design of UAV routing policies using multi-agent reinforcement learning has been considered, and propose a Multi-resolution, Multi-agent, Mean-field reinforcement learning algorithm, named 3M-RL, for flight planning, where multiple vehicles need

Collision-free path planning is also a major challenge in managing unmanned aerial vehicles (UAVs) fleets, especially in uncertain environments. The design of UAV routing policies using multi-agent reinforcement learning has been considered, and propose a Multi-resolution, Multi-agent, Mean-field reinforcement learning algorithm, named 3M-RL, for flight planning, where multiple vehicles need to avoid collisions with each other while moving towards their destinations. In this system, each UAV makes decisions based on local observations, and does not communicate with other UAVs. The algorithm trains a routing policy using an Actor-Critic neural network with multi-resolution observations, including detailed local information and aggregated global information based on mean-field. The algorithm tackles the curse-of-dimensionality problem in multi-agent reinforcement learning and provides a scalable solution. The proposed algorithm is tested in different complex scenarios in both 2D and 3D space and the simulation results show that 3M-RL result in good routing policies. Also as a compliment, dynamic data communications between UAVs and a control center has also been studied, where the control center needs to monitor the safety state of each UAV in the system in real time, where the transition of risk level is simply considered as a Markov process. Given limited communication bandwidth, it is impossible for the control center to communicate with all UAVs at the same time. A dynamic learning problem with limited communication bandwidth is also discussed in this paper where the objective is to minimize the total information entropy in real-time risk level tracking. The simulations also demonstrate that the algorithm outperforms policies such as a Round & Robin policy.
ContributorsWang, Weichang (Author) / Ying, Lei (Thesis advisor) / Liu, Yongming (Thesis advisor) / Zhang, Junshan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2021
161246-Thumbnail Image.png
Description
With demand for increased efficiency and smaller carbon footprint, power system operators are striving to improve their modeling, down to the individual consumer device, paving the way for higher production and consumption efficiencies and increased renewable generation without sacrificing system reliability. This dissertation explores two lines of research. The first

With demand for increased efficiency and smaller carbon footprint, power system operators are striving to improve their modeling, down to the individual consumer device, paving the way for higher production and consumption efficiencies and increased renewable generation without sacrificing system reliability. This dissertation explores two lines of research. The first part looks at stochastic continuous-time power system scheduling, where the goal is to better capture system ramping characteristics to address increased variability and uncertainty. The second part of the dissertation starts by developing aggregate population models for residential Demand Response (DR), focusing on storage devices, Electric Vehicles (EVs), Deferrable Appliances (DAs) and Thermostatically Controlled Loads (TCLs). Further, the characteristics of such a population aggregate are explored, such as the resemblance to energy storage devices, and particular attentions is given to how such aggregate models can be considered approximately convex even if the individual resource model is not. Armed with an approximately convex aggregate model for DR, how to interface it with present day energy markets is explored, looking at directions the market could go towards to better accommodate such devices for the benefit of not only the prosumer itself but the system as a whole.
ContributorsHreinsson, Kári (Author) / Scaglione, Anna (Thesis advisor) / Hedman, Kory (Committee member) / Zhang, Junshan (Committee member) / Alizadeh, Mahnoosh (Committee member) / Arizona State University (Publisher)
Created2020