Matching Items (38)
Filtering by

Clear all filters

152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
ContributorsZhou, Shan (Author) / Ying, Lei (Thesis advisor) / Zhang, Yanchao (Committee member) / Zhang, Junshan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2013
151982-Thumbnail Image.png
Description
The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.
ContributorsZhang, Rui (Author) / Zhang, Yanchao (Thesis advisor) / Duman, Tolga Mete (Committee member) / Xue, Guoliang (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151475-Thumbnail Image.png
Description
The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. There is thus a need to develop a new network science for modeling and quantifying cascading failures in multiple interdependent networks, and to develop network management algorithms that improve network robustness and ensure overall network reliability against cascading failures. To enhance the system robustness, a "regular" allocation strategy is proposed that yields better resistance against cascading failures compared to all possible existing strategies. Furthermore, in view of the load redistribution feature in many physical infrastructure networks, e.g., power grids, a CPS model is developed where the threshold model and the giant connected component model are used to capture the node failures in the physical infrastructure network and the cyber network, respectively. The second thrust is centered around the information dynamics in the CPS. One speculation is that the interconnections over multiple networks can facilitate information diffusion since information propagation in one network can trigger further spread in the other network. With this insight, a theoretical framework is developed to analyze information epidemic across multiple interconnecting networks. It is shown that the conjoining among networks can dramatically speed up message diffusion. Along a different avenue, many cyber-physical systems rely on wireless networks which offer platforms for information exchanges. To optimize the QoS of wireless networks, there is a need to develop a high-throughput and low-complexity scheduling algorithm to control link dynamics. To that end, distributed link scheduling algorithms are explored for multi-hop MIMO networks and two CSMA algorithms under the continuous-time model and the discrete-time model are devised, respectively.
ContributorsQian, Dajun (Author) / Zhang, Junshan (Thesis advisor) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Cochran, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
152383-Thumbnail Image.png
Description
Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric

Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric for IO and switch virtualization. The switch fabric has little data buffering, allowing up to 512 physical 10 Gb/s PCIe2.0 lanes to be connected via a switch fabric. The switch is scalable with adapters running multiple adaptation protocols, such as Ethernet over PCIe, PCIe over Internet, or FibreChannel over Ethernet. Such adaptation protocols allow integration of IO often required for disjoint datacenter applications such as storage and networking. The novel switch fabric based on space-time carrier sensing facilitates high bandwidth, low power, and low delay multi-protocol switching. To achieve Terabit switching, both time (high transmission speed) and space (multi-stage interconnection network) technologies are required. In this paper, we present the design of an up to 256 lanes Clos-network of multistage crossbar switch fabric for PCIe system. The switch core consists of 48 16x16 crossbar sub-switches. We also propose a new output contention resolution algorithm utilizing an out-of-band protocol of Request-To-Send (RTS), Clear-To-Send (CTS) before sending PCIe packets through the switch fabric. Preliminary power and delay estimates are provided.
ContributorsLuo, Haojun (Author) / Hui, Joseph (Thesis advisor) / Song, Hongjiang (Committee member) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2013
152872-Thumbnail Image.png
Description
LTE-Advanced networks employ random access based on preambles

transmitted according to multi-channel slotted Aloha principles. The

random access is controlled through a limit W on the number of

transmission attempts and a timeout period for uniform backoff after a

collision. We model the LTE-Advanced random access system by formulating

the equilibrium condition for the ratio

LTE-Advanced networks employ random access based on preambles

transmitted according to multi-channel slotted Aloha principles. The

random access is controlled through a limit W on the number of

transmission attempts and a timeout period for uniform backoff after a

collision. We model the LTE-Advanced random access system by formulating

the equilibrium condition for the ratio of the number of requests

successful within the permitted number of transmission attempts to those

successful in one attempt. We prove that for W≤8 there is only one

equilibrium operating point and for W≥9 there are three operating

points if the request load ρ is between load boundaries ρ1

and ρ2. We analytically identify these load boundaries as well as

the corresponding system operating points. We analyze the throughput and

delay of successful requests at the operating points and validate the

analytical results through simulations. Further, we generalize the

results using a steady-state equilibrium based approach and develop

models for single-channel and multi-channel systems, incorporating the

barring probability PB. Ultimately, we identify the de-correlating

effect of parameters O, PB, and Tomax and introduce the

Poissonization effect due to the backlogged requests in a slot. We

investigate the impact of Poissonization on different traffic and

conclude this thesis.
ContributorsTyagi, Revak (Author) / Reisslein, Martin (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / McGarry, Michael (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
152874-Thumbnail Image.png
Description
The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In

The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In the meantime, there are emerging demands for new types of authentication. Proximity authentication is an example, which is not needed for computers but quite necessary for smart devices. These challenges motivate me to study and develop novel authentication mechanisms specific for smart devices.

In this dissertation, I am interested in the special authentication demands of smart devices and about to satisfy the demands. First, I study how the features of smart devices affect user identity authentications. For identity authentication domain, I aim to design a continuous, forge-resistant authentication mechanism that does not interrupt user-device interactions. I propose a mechanism that authenticates user identity based on the user's finger movement patterns. Next, I study a smart-device-specific authentication, proximity authentication, which authenticates whether two devices are in close proximity. For prox- imity authentication domain, I aim to design a user-friendly authentication mechanism that can defend against relay attacks. In addition, I restrict the authenticated distance to the scale of near field, i.e., a few centimeters. My first design utilizes a user's coherent two-finger movement on smart device screen to restrict the distance. To achieve a fully-automated system, I explore acoustic communications and propose a novel near field authentication system.
ContributorsLi, Lingjun (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Ye, Jieping (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
153909-Thumbnail Image.png
Description
Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years.

Virtualization is the main technology of cloud computing to enable multi-tenancy.

Computing power, storage, and network are all virtualizable to be shared in an IaaS system. This important technology makes abstract infrastructure and resources available to users as isolated virtual machines (VMs) and virtual networks (VNs). However, it also increases vulnerabilities and possible attack surfaces in the system, since all users in a cloud share these resources with others or even the attackers. The promising protection mechanism is required to ensure strong isolation, mediated sharing, and secure communications between VMs. Technologies for detecting anomalous traffic and protecting normal traffic in VNs are also needed. Therefore, how to secure and protect the private traffic in VNs and how to prevent the malicious traffic from shared resources are major security research challenges in a cloud system.

This dissertation proposes four novel frameworks to address challenges mentioned above. The first work is a new multi-phase distributed vulnerability, measurement, and countermeasure selection mechanism based on the attack graph analytical model. The second work is a hybrid intrusion detection and prevention system to protect VN and VM using virtual machines introspection (VMI) and software defined networking (SDN) technologies. The third work further improves the previous works by introducing a VM profiler and VM Security Index (VSI) to keep track the security status of each VM and suggest the optimal countermeasure to mitigate potential threats. The final work is a SDN-based proactive defense mechanism for a cloud system using a reconfiguration model and moving target defense approaches to actively and dynamically change the virtual network configuration of a cloud system.
ContributorsChung, Chun-Jen (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Xue, Guoliang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
155925-Thumbnail Image.png
Description
A Virtual Private Network (VPN) is the traditional approach for an end-to-end secure connection between two endpoints. Most existing VPN solutions are intended for wired networks with reliable connections. In a mobile environment, network connections are less reliable and devices experience intermittent network disconnections due to either switching from one

A Virtual Private Network (VPN) is the traditional approach for an end-to-end secure connection between two endpoints. Most existing VPN solutions are intended for wired networks with reliable connections. In a mobile environment, network connections are less reliable and devices experience intermittent network disconnections due to either switching from one network to another or experiencing a gap in coverage during roaming. These disruptive events affects traditional VPN performance, resulting in possible termination of applications, data loss, and reduced productivity. Mobile VPNs bridge the gap between what users and applications expect from a wired network and the realities of mobile computing.

In this dissertation, MobiVPN, which was built by modifying the widely-used OpenVPN so that the requirements of a mobile VPN were met, was designed and developed. The aim in MobiVPN was for it to be a reliable and efficient VPN for mobile environments. In order to achieve these objectives, MobiVPN introduces the following features: 1) Fast and lightweight VPN session resumption, where MobiVPN is able decrease the time it takes to resume a VPN tunnel after a mobility event by an average of 97.19\% compared to that of OpenVPN. 2) Persistence of TCP sessions of the tunneled applications allowing them to survive VPN tunnel disruptions due to a gap in network coverage no matter how long the coverage gap is. MobiVPN also has mechanisms to suspend and resume TCP flows during and after a network disconnection with a packet buffering option to maintain the TCP sending rate. MobiVPN was able to provide fast resumption of TCP flows after reconnection with improved TCP performance when multiple disconnections occur with an average of 30.08\% increase in throughput in the experiments where buffering was used, and an average of 20.93\% of increased throughput for flows that were not buffered. 3) A fine-grained, flow-based adaptive compression which allows MobiVPN to treat each tunneled flow independently so that compression can be turned on for compressible flows, and turned off for incompressible ones. The experiments showed that the flow-based adaptive compression outperformed OpenVPN's compression options in terms of effective throughput, data reduction, and lesser compression operations.
ContributorsAlshalan, Abdullah O. (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Doupe, Adam (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2017
155954-Thumbnail Image.png
Description
The telephone network is used by almost every person in the modern world. With the rise of Internet access to the PSTN, the telephone network today is rife with telephone spam and scams. Spam calls are significant annoyances for telephone users, unlike email spam, spam calls demand immediate attention. They

The telephone network is used by almost every person in the modern world. With the rise of Internet access to the PSTN, the telephone network today is rife with telephone spam and scams. Spam calls are significant annoyances for telephone users, unlike email spam, spam calls demand immediate attention. They are not only significant annoyances but also result in significant financial losses in the economy. According to complaint data from the FTC, complaints on illegal calls have made record numbers in recent years. Americans lose billions to fraud due to malicious telephone communication, despite various efforts to subdue telephone spam, scam, and robocalls.

In this dissertation, a study of what causes the users to fall victim to telephone scams is presented, and it demonstrates that impersonation is at the heart of the problem. Most solutions today primarily rely on gathering offending caller IDs, however, they do not work effectively when the caller ID has been spoofed. Due to a lack of authentication in the PSTN caller ID transmission scheme, fraudsters can manipulate the caller ID to impersonate a trusted entity and further a variety of scams. To provide a solution to this fundamental problem, a novel architecture and method to authenticate the transmission of the caller ID is proposed. The solution enables the possibility of a security indicator which can provide an early warning to help users stay vigilant against telephone impersonation scams, as well as provide a foundation for existing and future defenses to stop unwanted telephone communication based on the caller ID information.
ContributorsTu, Huahong (Author) / Doupe, Adam (Thesis advisor) / Ahn, Gail-Joon (Thesis advisor) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Zhao, Ziming (Committee member) / Arizona State University (Publisher)
Created2017
156796-Thumbnail Image.png
Description
Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.
ContributorsChen, Yimin (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018