Matching Items (34)
Filtering by

Clear all filters

150380-Thumbnail Image.png
Description
Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in the array, and varying weather conditions. With the introduction of smarter inverters and solar modules, the data obtained from the photovoltaic array can be used to dynamically modify the array topology and improve the array power output. This is beneficial especially when module mismatches such as shading, soiling and aging occur in the photovoltaic array. This research focuses on the topology optimization of PV arrays under shading conditions using measurements obtained from a PV array set-up. A scheme known as topology reconfiguration method is proposed to find the optimal array topology for a given weather condition and faulty module information. Various topologies such as the series-parallel (SP), the total cross-tied (TCT), the bridge link (BL) and their bypassed versions are considered. The topology reconfiguration method compares the efficiencies of the topologies, evaluates the percentage gain in the generated power that would be obtained by reconfiguration of the array and other factors to find the optimal topology. This method is employed for various possible shading patterns to predict the best topology. The results demonstrate the benefit of having an electrically reconfigurable array topology. The effects of irradiance and shading on the array performance are also studied. The simulations are carried out using a SPICE simulator. The simulation results are validated with the experimental data provided by the PACECO Company.
ContributorsBuddha, Santoshi Tejasri (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Thesis advisor) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2011
150389-Thumbnail Image.png
Description
Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies

Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies for many electronic parts. Exposure to ionizing radiation increases the density of oxide and interfacial defects in bipolar oxides leading to an increase in base current in bipolar junction transistors. Radiation-induced excess base current is the primary cause of current gain degradation. Analysis of base current response can enable the measurement of defects generated by radiation exposure. In addition to radiation, the space environment is also characterized by extreme temperature fluctuations. Temperature, like radiation, also has a very strong impact on base current. Thus, a technique for separating the effects of radiation from thermal effects is necessary in order to accurately measure radiation-induced damage in space. This thesis focuses on the extraction of radiation damage in lateral PNP bipolar junction transistors and the space environment. It also describes the measurement techniques used and provides a quantitative analysis methodology for separating radiation and thermal effects on the bipolar base current.
ContributorsCampola, Michael J (Author) / Barnaby, Hugh J (Thesis advisor) / Holbert, Keith E. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
149902-Thumbnail Image.png
Description
For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it

For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it does not require interpolation, and it can be used on both stripmap and spotlight SAR systems. Another transform that can be used to enhance the processing of SAR image formation is the fractional Fourier transform (FRFT). This transform has been recently introduced to the signal processing community, and it has shown many promising applications in the realm of SAR signal processing, specifically because of its close association to the Wigner distribution and ambiguity function. The objective of this work is to improve the application of the FRFT in order to enhance the implementation of the CSA for SAR processing. This will be achieved by processing real phase-history data from the RADARSAT-1 satellite, a multi-mode SAR platform operating in the C-band, providing imagery with resolution between 8 and 100 meters at incidence angles of 10 through 59 degrees. The phase-history data will be processed into imagery using the conventional chirp scaling algorithm. The results will then be compared using a new implementation of the CSA based on the use of the FRFT, combined with traditional SAR focusing techniques, to enhance the algorithm's focusing ability, thereby increasing the peak-to-sidelobe ratio of the focused targets. The FRFT can also be used to provide focusing enhancements at extended ranges.
ContributorsNorthrop, Judith (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
149848-Thumbnail Image.png
Description
With tremendous increase in the popularity of networked multimedia applications, video data is expected to account for a large portion of the traffic on the Internet and more importantly next-generation wireless systems. To be able to satisfy a broad range of customers requirements, two major problems need to be solved.

With tremendous increase in the popularity of networked multimedia applications, video data is expected to account for a large portion of the traffic on the Internet and more importantly next-generation wireless systems. To be able to satisfy a broad range of customers requirements, two major problems need to be solved. The first problem is the need for a scalable representation of the input video. The recently developed scalable extension of the state-of-the art H.264/MPEG-4 AVC video coding standard, also known as H.264/SVC (Scalable Video Coding) provides a solution to this problem. The second problem is that wireless transmission medium typically introduce errors in the bit stream due to noise, congestion and fading on the channel. Protection against these channel impairments can be realized by the use of forward error correcting (FEC) codes. In this research study, the performance of scalable video coding in the presence of bit errors is studied. The encoded video is channel coded using Reed Solomon codes to provide acceptable performance in the presence of channel impairments. In the scalable bit stream, some parts of the bit stream are more important than other parts. Parity bytes are assigned to the video packets based on their importance in unequal error protection scheme. In equal error protection scheme, parity bytes are assigned based on the length of the message. A quantitative comparison of the two schemes, along with the case where no channel coding is employed is performed. H.264 SVC single layer video streams for long video sequences of different genres is considered in this study which serves as a means of effective video characterization. JSVM reference software, in its current version, does not support decoding of erroneous bit streams. A framework to obtain H.264 SVC compatible bit stream is modeled in this study. It is concluded that assigning of parity bytes based on the distribution of data for different types of frames provides optimum performance. Application of error protection to the bit stream enhances the quality of the decoded video with minimal overhead added to the bit stream.
ContributorsSundararaman, Hari (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
150175-Thumbnail Image.png
Description
The tracking of multiple targets becomes more challenging in complex environments due to the additional degrees of nonlinearity in the measurement model. In urban terrain, for example, there are multiple reflection path measurements that need to be exploited since line-of-sight observations are not always available. Multiple target tracking in urban

The tracking of multiple targets becomes more challenging in complex environments due to the additional degrees of nonlinearity in the measurement model. In urban terrain, for example, there are multiple reflection path measurements that need to be exploited since line-of-sight observations are not always available. Multiple target tracking in urban terrain environments is traditionally implemented using sequential Monte Carlo filtering algorithms and data association techniques. However, data association techniques can be computationally intensive and require very strict conditions for efficient performance. This thesis investigates the probability hypothesis density (PHD) method for tracking multiple targets in urban environments. The PHD is based on the theory of random finite sets and it is implemented using the particle filter. Unlike data association methods, it can be used to estimate the number of targets as well as their corresponding tracks. A modified maximum-likelihood version of the PHD (MPHD) is proposed to automatically and adaptively estimate the measurement types available at each time step. Specifically, the MPHD allows measurement-to-nonlinearity associations such that the best matched measurement can be used at each time step, resulting in improved radar coverage and scene visibility. Numerical simulations demonstrate the effectiveness of the MPHD in improving tracking performance, both for tracking multiple targets and targets in clutter.
ContributorsZhou, Meng (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2011
150108-Thumbnail Image.png
Description
In the late 1960s, Granger published a seminal study on causality in time series, using linear interdependencies and information transfer. Recent developments in the field of information theory have introduced new methods to investigate the transfer of information in dynamical systems. Using concepts from Chaos and Markov theory, much of

In the late 1960s, Granger published a seminal study on causality in time series, using linear interdependencies and information transfer. Recent developments in the field of information theory have introduced new methods to investigate the transfer of information in dynamical systems. Using concepts from Chaos and Markov theory, much of these methods have evolved to capture non-linear relations and information flow between coupled dynamical systems with applications to fields like biomedical signal processing. This thesis deals with the application of information theory to non-linear multivariate time series and develops measures of information flow to identify significant drivers and response (driven) components in networks of coupled sub-systems with variable coupling in strength and direction (uni- or bi-directional) for each connection. Transfer Entropy (TE) is used to quantify pairwise directional information. Four TE-based measures of information flow are proposed, namely TE Outflow (TEO), TE Inflow (TEI), TE Net flow (TEN), and Average TE flow (ATE). First, the reliability of the information flow measures on models, with and without noise, is evaluated. The driver and response sub-systems in these models are identified. Second, these measures are applied to electroencephalographic (EEG) data from two patients with focal epilepsy. The analysis showed dominant directions of information flow between brain sites and identified the epileptogenic focus as the system component typically with the highest value for the proposed measures (for example, ATE). Statistical tests between pre-seizure (preictal) and post-seizure (postictal) information flow also showed a breakage of the driving of the brain by the focus after seizure onset. The above findings shed light on the function of the epileptogenic focus and understanding of ictogenesis. It is expected that they will contribute to the diagnosis of epilepsy, for example by accurate identification of the epileptogenic focus from interictal periods, as well as the development of better seizure detection, prediction and control methods, for example by isolating pathologic areas of excessive information flow through electrical stimulation.
ContributorsPrasanna, Shashank (Author) / Jassemidis, Leonidas (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
Description
Advances in software and applications continue to demand advances in memory. The ideal memory would be non-volatile and have maximal capacity, speed, retention time, endurance, and radiation hardness while also having minimal physical size, energy usage, and cost. The programmable metallization cell (PMC) is an emerging memory technology that is

Advances in software and applications continue to demand advances in memory. The ideal memory would be non-volatile and have maximal capacity, speed, retention time, endurance, and radiation hardness while also having minimal physical size, energy usage, and cost. The programmable metallization cell (PMC) is an emerging memory technology that is likely to surpass flash memory in all the listed ideal memory characteristics. A comprehensive physics-based model is needed to fully understand PMC operation and aid in design optimization. With the intent of advancing the PMC modeling effort, this thesis presents two simulation models for the PMC. The first model is a finite element model based on Silvaco Atlas finite element analysis software. Limitations of the software are identified that make this model inconsistent with the operating mechanism of the PMC. The second model is a physics-based numerical model developed for the PMC. This model is successful in matching data measured from a chalcogenide glass PMC designed and manufactured at ASU. Matched operating characteristics observable in the current and resistance vs. voltage data include the OFF/ON resistances and write/erase and electrodeposition voltage thresholds. Multilevel programming is also explained and demonstrated with the numerical model. The numerical model has already proven useful by revealing some information presented about the operation and characteristics of the PMC.
ContributorsOleksy, David Ryan (Author) / Barnaby, Hugh J (Thesis advisor) / Kozicki, Michael N (Committee member) / Edwards, Arthur H (Committee member) / Arizona State University (Publisher)
Created2013
152198-Thumbnail Image.png
Description
The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters

The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters from human auditory models, such as auditory patterns and loudness, involves computationally intensive operations which can strain device resources. Hence, strategies for implementing computationally efficient human auditory models for loudness estimation have been studied in this thesis. Existing algorithms for reducing computations in auditory pattern and loudness estimation have been examined and improved algorithms have been proposed to overcome limitations of these methods. In addition, real-time applications such as perceptual loudness estimation and loudness equalization using auditory models have also been implemented. A software implementation of loudness estimation on iOS devices is also reported in this thesis. In addition to the loudness estimation algorithms and software, in this thesis project we also created new illustrations of speech and audio processing concepts for research and education. As a result, a new suite of speech/audio DSP functions was developed and integrated as part of the award-winning educational iOS App 'iJDSP." These functions are described in detail in this thesis. Several enhancements in the architecture of the application have also been introduced for providing the supporting framework for speech/audio processing. Frame-by-frame processing and visualization functionalities have been developed to facilitate speech/audio processing. In addition, facilities for easy sound recording, processing and audio rendering have also been developed to provide students, practitioners and researchers with an enriched DSP simulation tool. Simulations and assessments have been also developed for use in classes and training of practitioners and students.
ContributorsKalyanasundaram, Girish (Author) / Spanias, Andreas S (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2013
151530-Thumbnail Image.png
Description
Wireless technologies for health monitoring systems have seen considerable interest in recent years owing to it's potential to achieve vision of pervasive healthcare, that is healthcare to anyone, anywhere and anytime. Development of wearable wireless medical devices which have the capability to sense, compute, and send physiological information to a

Wireless technologies for health monitoring systems have seen considerable interest in recent years owing to it's potential to achieve vision of pervasive healthcare, that is healthcare to anyone, anywhere and anytime. Development of wearable wireless medical devices which have the capability to sense, compute, and send physiological information to a mobile gateway, forming a Body Sensor Network (BSN) is considered as a step towards achieving the vision of pervasive health monitoring systems (PHMS). PHMS consisting of wearable body sensors encourages unsupervised long-term monitoring, reducing frequent visit to hospital and nursing cost. Therefore, it is of utmost importance that operation of PHMS must be reliable, safe and have longer lifetime. A model-based automatic code generation provides a state-of-art code generation of sensor and smart phone code from high-level specification of a PHMS. Code generator intakes meta-model of PHMS specification, uses codebase containing code templates and algorithms, and generates platform specific code. Health-Dev, a framework for model-based development of PHMS, uses code generation to implement PHMS in sensor and smart phone. As a part of this thesis, model-based automatic code generation was evaluated and experimentally validated. The generated code was found to be safe in terms of ensuring no race condition, array, or pointer related errors in the generated code and more optimized as compared to hand-written BSN benchmark code in terms of lesser unreachable code.
ContributorsVerma, Sunit (Author) / Gupta, Sandeep (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2013
151954-Thumbnail Image.png
Description
Low Power, High Speed Analog to Digital Converters continues to remain one of the major building blocks for modern communication systems. Due to continuing trend of the aggressive scaling of the MOS devices, the susceptibility of most of the deep-sub micron CMOS technologies to the ionizing radiation has decreased over

Low Power, High Speed Analog to Digital Converters continues to remain one of the major building blocks for modern communication systems. Due to continuing trend of the aggressive scaling of the MOS devices, the susceptibility of most of the deep-sub micron CMOS technologies to the ionizing radiation has decreased over the period of time. When electronic circuits fabricated in these CMOS technologies are exposed to ionizing radiations, considerable change in the performance of circuits can be seen over a period of time. The change in the performance can be quantified in terms of decreasing linearity of the circuit which directly relates to the resolution of the circuit. Analog to Digital Converter is one of the most critical blocks of any electronic circuitry sent to space. The degradation in the performance of an Analog to Digital Converter due to radiation effects can jeopardize many research programs related to space. These radiation effects can completely hamper the working of a circuit. This thesis discusses the effects of Ionizing radiation on an 11 bit 325 MSPS pipeline ADC. The ADC is exposed to different doses of radiation and performance is compared.
ContributorsVashisth, Siddharth (Author) / Barnaby, Hugh J (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Mikkola, Esko (Committee member) / Arizona State University (Publisher)
Created2013