Matching Items (1,673)
Filtering by

Clear all filters

151997-Thumbnail Image.png
Description
The fluorescence enhancement by a single Noble metal sphere is separated into excitation/absorption enhancement and the emission quantum yield enhancement. Incorporating the classical model of molecular spontaneous emission into the excitation/absorption transition, the excitation enhancement is calculated rigorously by electrodynamics in the frequency domain. The final formula for the excitation

The fluorescence enhancement by a single Noble metal sphere is separated into excitation/absorption enhancement and the emission quantum yield enhancement. Incorporating the classical model of molecular spontaneous emission into the excitation/absorption transition, the excitation enhancement is calculated rigorously by electrodynamics in the frequency domain. The final formula for the excitation enhancement contains two parts: the primary field enhancement calculated from the Mie theory, and a derating factor due to the backscattering field from the molecule. When compared against a simplified model that only involves the primary Mie theory field calculation, this more rigorous model indicates that the excitation enhancement near the surface of the sphere is quenched severely due to the back-scattering field from the molecule. The degree of quenching depends in part on the bandwidth of the illumination because the presence of the sphere induces a red-shift in the absorption frequency of the molecule and at the same time broadens its spectrum. Monochromatic narrow band illumination at the molecule's original (unperturbed) resonant frequency yields large quenching. For the more realistic broadband illumination scenario, we calculate the final enhancement by integrating over the excitation/absorption spectrum. The numerical results indicate that the resonant illumination scenario overestimates the quenching and therefore would underestimate the total excitation enhancement if the illumination has a broader bandwidth than the molecule. Combining the excitation model with the exact Electrodynamical theory for emission, the complete realistic model demonstrates that there is a potential for significant fluorescence enhancement only for the case of a low quantum yield molecule close to the surface of the sphere. General expressions of the fluorescence enhancement for arbitrarily-shaped metal antennas are derived. The finite difference time domain method is utilized for analyzing these complicated antenna structures. We calculate the total excitation enhancement for the two-sphere dimer. Although the enhancement is greater in this case than for the single sphere, because of the derating effects the total enhancement can never reach the local field enhancement. In general, placing molecules very close to a plasmonic antenna surface yields poor enhancement because the local field is strongly affected by the molecular self-interaction with the metal antenna.
ContributorsZhang, Zhe (Author) / Diaz, Rodolfo E (Thesis advisor) / Lim, Derrick (Thesis advisor) / Pan, George (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
152001-Thumbnail Image.png
Description
Despite significant advances in digital pathology and automation sciences, current diagnostic practice for cancer detection primarily relies on a qualitative manual inspection of tissue architecture and cell and nuclear morphology in stained biopsies using low-magnification, two-dimensional (2D) brightfield microscopy. The efficacy of this process is limited by inter-operator variations in

Despite significant advances in digital pathology and automation sciences, current diagnostic practice for cancer detection primarily relies on a qualitative manual inspection of tissue architecture and cell and nuclear morphology in stained biopsies using low-magnification, two-dimensional (2D) brightfield microscopy. The efficacy of this process is limited by inter-operator variations in sample preparation and imaging, and by inter-observer variability in assessment. Over the past few decades, the predictive value quantitative morphology measurements derived from computerized analysis of micrographs has been compromised by the inability of 2D microscopy to capture information in the third dimension, and by the anisotropic spatial resolution inherent to conventional microscopy techniques that generate volumetric images by stacking 2D optical sections to approximate 3D. To gain insight into the analytical 3D nature of cells, this dissertation explores the application of a new technology for single-cell optical computed tomography (optical cell CT) that is a promising 3D tomographic imaging technique which uses visible light absorption to image stained cells individually with sub-micron, isotropic spatial resolution. This dissertation provides a scalable analytical framework to perform fully-automated 3D morphological analysis from transmission-mode optical cell CT images of hematoxylin-stained cells. The developed framework performs rapid and accurate quantification of 3D cell and nuclear morphology, facilitates assessment of morphological heterogeneity, and generates shape- and texture-based biosignatures predictive of the cell state. Custom 3D image segmentation methods were developed to precisely delineate volumes of interest (VOIs) from reconstructed cell images. Comparison with user-defined ground truth assessments yielded an average agreement (DICE coefficient) of 94% for the cell and its nucleus. Seventy nine biologically relevant morphological descriptors (features) were computed from the segmented VOIs, and statistical classification methods were implemented to determine the subset of features that best predicted cell health. The efficacy of our proposed framework was demonstrated on an in vitro model of multistep carcinogenesis in human Barrett's esophagus (BE) and classifier performance using our 3D morphometric analysis was compared against computerized analysis of 2D image slices that reflected conventional cytological observation. Our results enable sensitive and specific nuclear grade classification for early cancer diagnosis and underline the value of the approach as an objective adjunctive tool to better understand morphological changes associated with malignant transformation.
ContributorsNandakumar, Vivek (Author) / Meldrum, Deirdre R (Thesis advisor) / Nelson, Alan C. (Committee member) / Karam, Lina J (Committee member) / Ye, Jieping (Committee member) / Johnson, Roger H (Committee member) / Bussey, Kimberly J (Committee member) / Arizona State University (Publisher)
Created2013
152005-Thumbnail Image.png
Description
The goal of this research project is to develop a DOF (degree of freedom) algebra for entity clusters to support tolerance specification, validation, and tolerance automation. This representation is required to capture the relation between geometric entities, metric constraints and tolerance specification. This research project is a part of an

The goal of this research project is to develop a DOF (degree of freedom) algebra for entity clusters to support tolerance specification, validation, and tolerance automation. This representation is required to capture the relation between geometric entities, metric constraints and tolerance specification. This research project is a part of an on-going project on creating a bi-level model of GD&T; (Geometric Dimensioning and Tolerancing). This thesis presents the systematic derivation of degree of freedoms of entity clusters corresponding to tolerance classes. The clusters can be datum reference frames (DRFs) or targets. A binary vector representation of degree of freedom and operations for combining them are proposed. An algebraic method is developed by using DOF representation. The ASME Y14.5.1 companion to the Geometric Dimensioning and Tolerancing (GD&T;) standard gives an exhaustive tabulation of active and invariant degrees of freedom (DOF) for Datum Reference Frames (DRF). This algebra is validated by checking it against all cases in the Y14.5.1 tabulation. This algebra allows the derivation of the general rules for tolerance specification and validation. A computer tool is implemented to support GD&T; specification and validation. The computer implementation outputs the geometric and tolerance information in the form of a CTF (Constraint-Tolerance-Feature) file which can be used for tolerance stack analysis.
ContributorsShen, Yadong (Author) / Shah, Jami (Thesis advisor) / Davidson, Joseph (Committee member) / Huebner, Kenneth (Committee member) / Arizona State University (Publisher)
Created2013
152010-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary

Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based built in self test(BIST) which can be used to get MEMS data and later this data can be used for statistical analysis. A capacitive MEMS accelerometer is considered to test this BIST approach. This BIST circuit overhead is less and utilizes most of the standard readout circuit. This thesis discusses accelerometer response for electrical stimulus and BIST architecture. As a part of this BIST circuit, a second order sigma delta modulator has been designed. This modulator has a sampling frequency of 1MHz and bandwidth of 6KHz. SNDR of 60dB is achieved with 1Vpp differential input signal and 3.3V supply
ContributorsKundur, Vinay (Author) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152012-Thumbnail Image.png
Description
As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid.
ContributorsHytowitz, Robin Broder (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151648-Thumbnail Image.png
Description
Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has become a major factor. In this thesis, self-heating effects in a 25nm fully depleted (FD) SOI device are studied by implementing a 2-D particle based device simulator coupled self-consistently with the energy balance equations for both acoustic and optical phonons. Semi-analytical expressions for acoustic and optical phonon scattering rates (all modes) are derived and evaluated using quadratic dispersion relationships. Moreover, probability distribution functions for the final polar angle after scattering is also computed and the rejection technique is implemented for its selection. Since the temperature profile varies throughout the device, temperature dependent scattering tables are used for the electron transport kernel. The phonon energy balance equations are also modified to account for inelasticity in acoustic phonon scattering for all branches. Results obtained from this simulation help in understanding self-heating and the effects it has on the device characteristics. The temperature profiles in the device show a decreasing trend which can be attributed to the inelastic interaction between the electrons and the acoustic phonons. This is further proven by comparing the temperature plots with the simulation results that assume the elastic and equipartition approximation for acoustic and the Einstein model for optical phonons. Thus, acoustic phonon inelasticity and the quadratic phonon dispersion relationships play a crucial role in studying self-heating effects.
ContributorsGada, Manan Laxmichand (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Arizona State University (Publisher)
Created2013
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151672-Thumbnail Image.png
Description
ABSTRACT A vortex tube is a device of a simple structure with no moving parts that can be used to separate a compressed gas into a hot stream and a cold stream. Many studies have been carried out to find the mechanisms of the energy separation in the vortex tube.

ABSTRACT A vortex tube is a device of a simple structure with no moving parts that can be used to separate a compressed gas into a hot stream and a cold stream. Many studies have been carried out to find the mechanisms of the energy separation in the vortex tube. Recent rapid development in computational fluid dynamics is providing a powerful tool to investigate the complex flow in the vortex tube. However various issues in these numerical simulations remain, such as choosing the most suitable turbulent model, as well as the lack of systematic comparative analysis. LES model for the vortex tube simulation is hardly used in the present literatures, and the influence of parameters on the performance of the vortex tube has scarcely been studied. This study is aimed to find the influence of various parameters on the performance of the vortex tube, the best geometric value of vortex tube and the realizable method to reach the required cold out flow rate 40 kg/s . First of all, setting up an original 3-D simulation vortex tube model. By comparing experiment results reported in the literature and our simulation results, a most suitable model for the simulation of the vortex tube is obtained. Secondly, we perform simulations to optimize parameters that can deliver a set of desired output, such as cold stream pressure, temperature and flow-rate. We also discuss the use of the cold air flow for petroleum engineering applications.
ContributorsCang, Ruijin (Author) / Chen, Kangping (Thesis advisor) / Huang, Hueiping (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
151321-Thumbnail Image.png
Description
This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance

This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance at a functional target feature, such as at the blades that must be controlled. The first part of this thesis relates the limits of location for the target part to geometric imperfections of other parts when stacked-up in parallel paths. In this section parts are considered to be rigid (non-deformable). By understanding how much of variation from the supporting parts contribute to variations of the target feature, a designer can better utilize the tolerance budget when assigning values to individual tolerances. In this work, the T-Map®, a spatial math model is used to model the tolerance accumulation in parallel assemblies. In other applications where parts are flexible, deformations are induced when parts in parallel are clamped together during assembly. Presuming that perfectly manufactured parts have been designed to fit perfectly together and produce zero deformations, the clamping-induced deformations result entirely from the imperfect geometry that is produced during manufacture. The magnitudes and types of these deformations are a function of part dimensions and material stiffnesses, and they are limited by design tolerances that control manufacturing variations. These manufacturing variations, if uncontrolled, may produce high enough stresses when the parts are assembled that premature failure can occur before the design life. The last part of the thesis relates the limits on the largest von Mises stress in one part to functional tolerance limits that must be set at the beginning of a tolerance analysis of parts in such an assembly.
ContributorsJaishankar, Lupin Niranjan (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Committee member) / Mignolet, Marc P (Committee member) / Arizona State University (Publisher)
Created2012
151322-Thumbnail Image.png
Description
With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated

With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated with the operation of smart grids, this dissertation addresses two important aspects of smart grids: increased penetration of renewable resources, and increased reliance on sensor systems to improve reliability and performance of critical power system components. Present renewable portfolio standards are changing both structural and performance characteristics of power systems by replacing conventional generation with alternate energy resources such as photovoltaic (PV) systems. The present study investigates the impact of increased penetration of PV systems on steady state performance as well as transient stability of a large power system which is a portion of the Western U.S. interconnection. Utility scale and residential rooftop PVs are added to replace a portion of conventional generation resources. While steady state voltages are observed under various PV penetration levels, the impact of reduced inertia on transient stability performance is also examined. The simulation results obtained effectively identify both detrimental and beneficial impacts of increased PV penetration both for steady state stability and transient stability performance. With increased penetration of the renewable energy resources, and with the current loading scenario, more transmission system components such as transformers and circuit breakers are subject to increased stress and overloading. This research work explores the feasibility of increasing system reliability by applying condition monitoring systems to selected circuit breakers and transformers. A very important feature of smart grid technology is that this philosophy decreases maintenance costs by deploying condition monitoring systems that inform the operator of impending failures; or the approach can ameliorate problematic conditions. A method to identify the most critical transformers and circuit breakers with the aid of contingency ranking methods is presented in this study. The work reported in this dissertation parallels an industry sponsored study in which a considerable level of industry input and industry reported concerns are reflected.
ContributorsEftekharnejad, Sara (Author) / Heydt, Gerald (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Si, Jennie (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012