Matching Items (28)
Filtering by

Clear all filters

153107-Thumbnail Image.png
Description
To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of

To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of the PV module. This thesis presents two studies that focus on investigating the soiling effect on the performance of the PV modules installed in Metro Phoenix area.

The first study was conducted to investigate the optimum cleaning frequency for cleaning PV modules installed in Mesa, AZ. By monitoring the soiling loss of PV modules mounted on a mock rooftop at ASU-PRL, a detailed soiling modeling was obtained. Same setup was also used for other soiling-related investigations like studying the effect of soiling density on angle of incidence (AOI) dependence, the climatological relevance (CR) to soiling, and spatial variation of the soiling loss. During the first dry season (May to June), the daily soiling rate was found as -0.061% for 20o tilted modules. Based on the obtained soiling rate, cleaning PV modules, when the soiling is just due to dust on 20o tilted residential arrays, was found economically not justifiable.

The second study focuses on evaluating the soiling loss in different locations of Metro Phoenix area of Arizona. The main goal behind the second study was to validate the daily soiling rate obtained from the mock rooftop setup in the first part of this thesis. By collaborating with local solar panel cleaning companies, soiling data for six residential systems in 5 different cities in and around Phoenix was collected, processed, and analyzed. The range of daily soiling rate in the Phoenix area was found as -0.057% to -0.085% for 13-28o tilted arrays. The soiling rate found in the first part of the thesis (-0.061%) for 20o tilted array, was validated since it falls within the range obtained from the second part of the thesis.
ContributorsNaeem, Mohammad Hussain (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2014
156029-Thumbnail Image.png
Description
With the application of reverse osmosis (RO) membranes in the wastewater treatment and seawater desalination, the limitation of flux and fouling problems of RO have gained more attention from researchers. Because of the tunable structure and physicochemical properties of nanomaterials, it is a suitable material that can be used to

With the application of reverse osmosis (RO) membranes in the wastewater treatment and seawater desalination, the limitation of flux and fouling problems of RO have gained more attention from researchers. Because of the tunable structure and physicochemical properties of nanomaterials, it is a suitable material that can be used to incorporate with RO to change the membrane performances. Silver is biocidal, which has been used in a variety of consumer products. Recent studies showed that fabricating silver nanoparticles (AgNPs) on membrane surfaces can mitigate the biofouling problem on the membrane. Studies have shown that Ag released from the membrane in the form of either Ag ions or AgNP will accelerate the antimicrobial activity of the membrane. However, the silver release from the membrane will lower the silver loading on the membrane, which will eventually shorten the antimicrobial activity lifetime of the membrane. Therefore, the silver leaching amount is a crucial parameter that needs to be determined for every type of Ag composite membrane.

This study is attempting to compare four different silver leaching test methods, to study the silver leaching potential of the silver impregnated membranes, conducting the advantages and disadvantages of the leaching methods. An In-situ reduction Ag loaded RO membrane was examined in this study. A custom waterjet test was established to create a high-velocity water flow to test the silver leaching from the nanocomposite membrane in a relative extreme environment. The batch leaching test was examined as the most common leaching test method for the silver composite membrane. The cross-flow filtration and dead-end test were also examined to compare the silver leaching amounts.

The silver coated membrane used in this experiment has an initial silver loading of 2.0± 0.51 ug/cm2. The mass balance was conducted for all of the leaching tests. For the batch test, water jet test, and dead-end filtration, the mass balances are all within 100±25%, which is acceptable in this experiment because of the variance of the initial silver loading on the membranes. A bad silver mass balance was observed at cross-flow filtration. Both of AgNP and Ag ions leached in the solution was examined in this experiment. The concentration of total silver leaching into solutions from the four leaching tests are all below the Secondary Drinking Water Standard for silver which is 100 ppb. The cross-flow test is the most aggressive leaching method, which has more than 80% of silver leached from the membrane after 50 hours of the test. The water jet (54 ± 6.9% of silver remaining) can cause higher silver leaching than batch test (85 ± 1.2% of silver remaining) in one-hour, and it can also cause both AgNP and Ag ions leaching from the membrane, which is closer to the leaching condition in the cross-flow test.
ContributorsHan, Bingru (Author) / Westerhoff, Paul (Thesis advisor) / Perreault, Francois (Committee member) / Sinha, Shahnawaz (Committee member) / Arizona State University (Publisher)
Created2017
156589-Thumbnail Image.png
Description
The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV

The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV modules lying in the landfills by 2050, that may not become a not-so-sustainable way of sourcing energy since all PV modules could contain certain amount of toxic substances. Currently in the United States, PV modules are categorized as general waste and can be disposed in landfills. However, potential leaching of toxic chemicals and materials, if any, from broken end-of-life modules may pose health or environmental risks. There is no standard procedure to remove samples from PV modules for chemical toxicity testing in the Toxicity Characteristic Leaching Procedure (TCLP) laboratories as per EPA 1311 standard. The main objective of this thesis is to develop an unbiased sampling approach for the TCLP testing of PV modules. The TCLP testing was concentrated only for the laminate part of the modules, as they are already existing recycling technologies for the frame and junction box components of PV modules. Four different sample removal methods have been applied to the laminates of five different module manufacturers: coring approach, cell-cut approach, strip-cut approach, and hybrid approach. These removed samples were sent to two different TCLP laboratories, and TCLP results were tested for repeatability within a lab and reproducibility between the labs. The pros and cons of each sample removal method have been explored and the influence of sample removal methods on the variability of TCLP results has been discussed. To reduce the variability of TCLP results to an acceptable level, additional improvements in the coring approach, the best of the four tested options, are still needed.
ContributorsLeslie, Joswin (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2018
157471-Thumbnail Image.png
Description
Large-scale blackouts that have occurred across North America in the past few decades have paved the path for substantial amount of research in the field of security assessment of the grid. With the aid of advanced technology such as phasor measurement units (PMUs), considerable work has been done involving voltage

Large-scale blackouts that have occurred across North America in the past few decades have paved the path for substantial amount of research in the field of security assessment of the grid. With the aid of advanced technology such as phasor measurement units (PMUs), considerable work has been done involving voltage stability analysis and power system dynamic behavior analysis to ensure security and reliability of the grid. Online dynamic security assessment (DSA) analysis has been developed and applied in several power system control centers. Existing applications of DSA are limited by the assumption of simplistic load profiles, which often considers a normative day to represent an entire year. To overcome these aforementioned challenges, this research developed a novel DSA scheme to provide security prediction in real-time for load profiles corresponding to different seasons. The major contributions of this research are to (1) develop a DSA scheme incorporated with PMU data, (2) consider a comprehensive seasonal load profile, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA. The ML algorithms that will be the focus of this study include decision trees (DTs), support vector machines (SVMs), random forests (RFs), and multilayer neural networks (MLNNs).

This thesis describes the development of a novel DSA scheme using synchrophasor measurements that accounts for the load variability occurring across different seasons in a year. Different amounts of solar generation have also been incorporated in this study to account for increasing percentage of renewables in the modern grid. To account for the security of the operating conditions different ML algorithms have been trained and tested. A database of cases for different operating conditions has been developed offline that contains secure as well as insecure cases, and the ML models have been trained to classify the security or insecurity of a particular operating condition in real-time. Multiple scenarios are generated every 15 minutes for different seasons and stored in the database. The performance of this approach is tested on the IEEE-118 bus system.
ContributorsNATH, ANUBHAV (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2019
156913-Thumbnail Image.png
Description
With the increasing penetration of converter interfaced renewable generation into power systems, the structure and behavior of the power system is changing, catalyzing alterations and enhancements in modeling and simulation methods.

This work puts forth a Hybrid Electromagnetic Transient-Transient Stability simulation method implemented using MATLAB and Simulink, to study power electronic

With the increasing penetration of converter interfaced renewable generation into power systems, the structure and behavior of the power system is changing, catalyzing alterations and enhancements in modeling and simulation methods.

This work puts forth a Hybrid Electromagnetic Transient-Transient Stability simulation method implemented using MATLAB and Simulink, to study power electronic based power systems. Hybrid Simulation enables detailed, accurate modeling, along with fast, efficient simulation, on account of the Electromagnetic Transient (EMT) and Transient Stability (TS) simulations respectively. A critical component of hybrid simulation is the interaction between the EMT and TS simulators, established through a well-defined interface technique, which has been explored in detail.

This research focuses on the boundary conditions and interaction between the two simulation models for optimum accuracy and computational efficiency.

A case study has been carried out employing the proposed hybrid simulation method. The test case used is the IEEE 9-bus system, modified to integrate it with a solar PV plant. The validation of the hybrid model with the benchmark full EMT model, along with the analysis of the accuracy and efficiency, has been performed. The steady-state and transient analysis results demonstrate that the performance of the hybrid simulation method is competent. The hybrid simulation technique suitably captures accuracy of EMT simulation and efficiency of TS simulation, therefore adequately representing the behavior of power systems with high penetration of converter interfaced generation.
ContributorsAthaide, Denise Maria Christine (Author) / Qin, Jiangchao (Thesis advisor) / Ayyanar, Raja (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2018
157073-Thumbnail Image.png
Description
High Voltage Direct Current (HVDC) Technology has several features that make it particularly attractive for specific transmission applications. Recent years have witnessed an unprecedented growth in the number of the HVDC projects, which demonstrates a heightened interest in the HVDC technology. In parallel, the use of renewable energy sources has

High Voltage Direct Current (HVDC) Technology has several features that make it particularly attractive for specific transmission applications. Recent years have witnessed an unprecedented growth in the number of the HVDC projects, which demonstrates a heightened interest in the HVDC technology. In parallel, the use of renewable energy sources has dramatically increased. For instance, Kuwait has recently announced a renewable project to be completed in 2035; this project aims to produce 15% of the countrys energy consumption from renewable sources. However, facilities that use renewable sources, such as solar and wind, to provide clean energy, are mostly placed in remote areas, as their installation requires a massive space of free land. Consequently, considerable challenges arise in terms of transmitting power generated from renewable sources of energy in remote areas to urban areas for further consumption.

The present thesis investigates different transmission line systems for transmitting bulk energy from renewable sources. Specifically, two systems will be focused on: the high-voltage alternating current (HVAC) system and the high-voltage direct current (HVDC) system. In order to determine the most efficient way of transmitting bulk energy from renewable sources, different aspects of the aforementioned two types of systems are analyzed. Limitations inherent in both HVAC and HVDC systems have been discussed.

At present, artificial intelligence plays an important role in power system control and monitoring. Consequently, in this thesis, the fault issue has been analyzed in transmission systems, with a specific consideration of machine learning tools that can help monitor transmission systems by detecting fault locations. These tools, called models, are used to analyze the collected data. In the present thesis, a focus on such models as linear regression (LR), K-nearest neighbors (KNN), linear support vector machine (LSVM) , and adaptive boost (AdaBoost). Finally, the accuracy of each model is evaluated and discussed. The machine learning concept introduced in the present thesis lays down the foundation for future research in this area so that to enable further research on the efficient ways to improve the performance of transmission line components and power systems.
ContributorsAlbannai, Bassam Ahmad (Author) / Weng, Yang (Thesis advisor) / Wu, Meng (Committee member) / Dahal, Som (Committee member) / Arizona State University (Publisher)
Created2019
154815-Thumbnail Image.png
Description
Utility scale solar energy is generated by photovoltaic (PV) cell arrays, which are often deployed in remote areas. A PV array monitoring system is considered where smart sensors are attached to the PV modules and transmit data to a monitoring station through wireless links. These smart monitoring devices may be

Utility scale solar energy is generated by photovoltaic (PV) cell arrays, which are often deployed in remote areas. A PV array monitoring system is considered where smart sensors are attached to the PV modules and transmit data to a monitoring station through wireless links. These smart monitoring devices may be used for fault detection and management of connection topologies. In this thesis, a compact hardware simulator of the smart PV array monitoring system is described. The voltage, current, irradiance, and temperature of each PV module are monitored and the status of each panel along with all data is transmitted to a mobile device. LabVIEW and Arduino board programs have been developed to display and visualize the monitoring data from all sensors. All data is saved on servers and mobile devices and desktops can easily access analytics from anywhere. Various PV array conditions including shading, faults, and loading are simulated and demonstrated.

Additionally, Electrical mismatch between modules in a PV array due to partial shading causes energy losses beyond the shaded module, as unshaded modules are forced to operate away from their maximum power point in order to compensate for the shading. An irradiance estimation algorithm is presented for use in a mismatch mitigation system. Irradiance is estimated using measurements of module voltage, current, and back surface temperature. These estimates may be used to optimize an array’s electrical configuration and reduce the mismatch losses caused by partial shading. Propagation of error in the estimation is examined; it is found that accuracy is sufficient for use in the proposed mismatch mitigation application.
ContributorsPeshin, Shwetang (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2016
171817-Thumbnail Image.png
Description
The fast growth of the power system industry and the increase in the usage of computerized management systems introduces more complexities to power systems operations. Although these computerized management systems help system operators manage power systems reliably and efficiently, they introduce the threat of cyber-attacks. In this regard, this dissertation

The fast growth of the power system industry and the increase in the usage of computerized management systems introduces more complexities to power systems operations. Although these computerized management systems help system operators manage power systems reliably and efficiently, they introduce the threat of cyber-attacks. In this regard, this dissertation focuses on the load-redistribution (LR) attacks, which cause overflows in power systems. Previous researchers have shown the possibility of launching undetectable LR attacks against power systems, even when protection schemes exist. This fact pushes researchers to develop detection mechanisms. In this thesis, real-time detection mechanisms are developed based on the fundamental knowledge of power systems, operation research, and machine learning. First, power systems domain insight is used to identify an underlying exploitable structure for the core problem of LR attacks. Secondly, a greedy algorithm’s ability to solve the identified structure to optimality is proved, which helps operators quickly find the best attack vector and the most sensitive buses for each target transmission asset. Then, two quantitative security indices are proposed and leveraged to develop a measurement threat analysis (MTA) tool. Finally, a machine learning-based classifier is used to enhance the MTA tool’s functionality in flagging tiny LR attacks and distinguishing them from measurement/forecasting errors. On the other hand, after acknowledging that an adversarial LR attack interferes with the system, establishing a corrective action is imperative to mitigate or remove the potential consequences of the attack. This dissertation proposes two corrective actions; the first one is developed based on the worst-case attack scenario, considering the information provided by the MTA tool. After The MTA tool flags an LR attack in the system, it should determine the primary target and other affected transmission assets, using which the operator can estimate the actual loads in the post-attack stage. This estimation is essential since the corresponding security constraints in the first corrective action model are modeled based on these loads. The second one is a robust optimization that considers various load scenarios. The functionality of this robust model does not depend on the information provided by the MTA tool and is more reliable.
ContributorsKaviani, Ramin (Author) / Hedman, Kory (Thesis advisor) / Vittal, Vijay (Committee member) / Hedman, Mojdeh (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2022
157883-Thumbnail Image.png
Description
In recent years, with the increasing penetration of solar generation, the uncertainty and variability of the power system generation also have increased. Power systems always require a balance between generation and load. The generation of the conventional generators must be scheduled to meet the total net load of the system

In recent years, with the increasing penetration of solar generation, the uncertainty and variability of the power system generation also have increased. Power systems always require a balance between generation and load. The generation of the conventional generators must be scheduled to meet the total net load of the system with the variability and uncertainty of the solar resources integrated. The ability to match generation to load requires certain flexibility of the conventional generation units as well as a flexible transmission network to deliver the power. In this work, given the generation flexibility primarily reflected in the ramping rates, as well as the minimum and maximum output of the generation units, the transmission network flexibility is assessed using the metric developed in this work.

The main topic of this thesis is the examination of the transmission system flexibility using time series power flows (TSPFs). First, a TSPFs program is developed considering the economic dispatch of all the generating stations, as well as the available ramping rate of each generating unit. The time series power flow spans a period of 24 hours with 5-minute time interval and hence includes 288 power flow snapshots. Every power flow snapshot is created based on the power system topology and the previous system state. These power flow snapshots are referred to as the base case power flow below.

Sensitivity analysis is then conducted by using the TSPFs program as a primary tool, by fixing all but one of the system changes which include: solar penetration, wires to wires interconnection, expected retirements of coal units and expected participation in the energy

imbalance market. The impact of each individual change can be evaluated by the metric developed in the following chapters.
ContributorsChen, Mengxi (Author) / Vittal, Vijay (Thesis advisor) / Hedman, Mojdeh Khorsand (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2019
187366-Thumbnail Image.png
Description
The high R/X ratio of typical distribution systems makes the system voltage vulnerable to active power injection from the distributed energy resources (DERs). Moreover, the intermittent and uncertain nature of the DER generation brings new challenges to voltage management. As guided by the previous IEEE standard 1547-2003, most of the

The high R/X ratio of typical distribution systems makes the system voltage vulnerable to active power injection from the distributed energy resources (DERs). Moreover, the intermittent and uncertain nature of the DER generation brings new challenges to voltage management. As guided by the previous IEEE standard 1547-2003, most of the existing photovoltaic (PV) systems in the real distribution networks are equipped with conventional inverters, which only allow the PV systems to operate at unity power factor to generate active power. To utilize the voltage control capability of the existing PV systems following the guideline of the revised IEEE standard 1547-2018, this dissertation proposes a two-stage stochastic optimization strategy aimed at optimally placing the PV smart inverters with Volt-VAr capability among the existing PV systems for distribution systems with high PV penetration to mitigate voltage violations. PV smart inverters are fast-response devices compared to conventional voltage control devices in the distribution system. Historically, distribution system planning and operation studies are mainly based on quasi-static simulation, which ignores system dynamic transitions between static solutions. However, as high-penetration PV systems are present in the distribution system, the fast transients of the PV smart inverters cannot be ignored. A detailed dynamic model of the PV smart inverter with Volt-VAr control capability is developed as a dynamic link library (DLL) in OpenDSS to validate the system voltage stability with autonomous control of the optimally placed PV smart inverters. Static and dynamic verification is conducted on an actual 12.47 kV, 9 km-long Arizona utility feeder that serves residential customers. To achieve fast simulation and accommodate more complex PV models with desired accuracy and efficiency, an integrative dynamic simulation framework for OpenDSS with adaptive step size control is proposed. Based on the original fixed-step size simulation framework in OpenDSS, the proposed framework adds a function in the OpenDSS main program to adjust its step size to meet the minimum step size requirement from all the PV inverters in the system. Simulations are conducted using both the original and the proposed framework to validate the proposed simulation framework.
ContributorsChen, Mengxi (Author) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Thesis advisor) / Hedman, Mojdeh (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2023