Matching Items (3)
Filtering by

Clear all filters

171638-Thumbnail Image.png
Description
The high uncertainty of renewables introduces more dynamics to power systems. The conventional way of monitoring and controlling power systems is no longer reliable. New strategies are needed to ensure the stability and reliability of power systems. This work aims to assess the use of machine learning methods in analyzing

The high uncertainty of renewables introduces more dynamics to power systems. The conventional way of monitoring and controlling power systems is no longer reliable. New strategies are needed to ensure the stability and reliability of power systems. This work aims to assess the use of machine learning methods in analyzing data from renewable integrated power systems to aid the decisionmaking of electricity market participants. Specifically, the work studies the cases of electricity price forecast, solar panel detection, and how to constrain the machine learning methods to obey domain knowledge.Chapter 2 proposes to diversify the data source to ensure a more accurate electricity price forecast. Specifically, the proposed two-stage method, namely the rerouted method, learns two types of mapping rules: the mapping between the historical wind power and the historical price and the forecasting rule for wind generation. Based on the two rules, we forecast the price via the forecasted generation and the learned mapping between power and price. The massive numerical comparison gives guidance for choosing proper machine learning methods and proves the effectiveness of the proposed method. Chapter 3 proposes to integrate advanced data compression techniques into machine learning algorithms to either improve the predicting accuracy or accelerate the computation speed. New semi-supervised learning and one-class classification methods are proposed based on autoencoders to compress the data while refining the nonlinear data representation of human behavior and solar behavior. The numerical results show robust detection accuracy, laying down the foundation for managing distributed energy resources in distribution grids. Guidance is also provided to determine the proper machine learning methods for the solar detection problem. Chapter 4 proposes to integrate different types of domain knowledge-based constraints into basic neural networks to guide the model selection and enhance interpretability. A hybrid model is proposed to penalize derivatives and alter the structure to improve the performance of a neural network. We verify the performance improvement of introducing prior knowledge-based constraints on both synthetic and real data sets.
ContributorsLuo, Shuman (Author) / Weng, Yang (Thesis advisor) / Lei, Qin (Committee member) / Fricks, John (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2022
157719-Thumbnail Image.png
Description
Functional brain imaging experiments are widely conducted in many fields for study- ing the underlying brain activity in response to mental stimuli. For such experiments, it is crucial to select a good sequence of mental stimuli that allow researchers to collect informative data for making precise and valid statistical inferences

Functional brain imaging experiments are widely conducted in many fields for study- ing the underlying brain activity in response to mental stimuli. For such experiments, it is crucial to select a good sequence of mental stimuli that allow researchers to collect informative data for making precise and valid statistical inferences at minimum cost. In contrast to most existing studies, the aim of this study is to obtain optimal designs for brain mapping technology with an ultra-high temporal resolution with respect to some common statistical optimality criteria. The first topic of this work is on finding optimal designs when the primary interest is in estimating the Hemodynamic Response Function (HRF), a function of time describing the effect of a mental stimulus to the brain. A major challenge here is that the design matrix of the statistical model is greatly enlarged. As a result, it is very difficult, if not infeasible, to compute and compare the statistical efficiencies of competing designs. For tackling this issue, an efficient approach is built on subsampling the design matrix and the use of an efficient computer algorithm is proposed. It is demonstrated through the analytical and simulation results that the proposed approach can outperform the existing methods in terms of computing time, and the quality of the obtained designs. The second topic of this work is to find optimal designs when another set of popularly used basis functions is considered for modeling the HRF, e.g., to detect brain activations. Although the statistical model for analyzing the data remains linear, the parametric functions of interest under this setting are often nonlinear. The quality of the de- sign will then depend on the true value of some unknown parameters. To address this issue, the maximin approach is considered to identify designs that maximize the relative efficiencies over the parameter space. As shown in the case studies, these maximin designs yield high performance for detecting brain activation compared to the traditional designs that are widely used in practice.
ContributorsAlghamdi, Reem (Author) / Kao, Ming-Hung (Thesis advisor) / Fricks, John (Committee member) / Pan, Rong (Committee member) / Reiser, Mark R. (Committee member) / Stufken, John (Committee member) / Arizona State University (Publisher)
Created2019
132421-Thumbnail Image.png
Description
The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how

The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how a model can be developed to predict the mechanical failure of vacuum pumps.
ContributorsHalver, Grant (Author) / Taylor, Tom (Thesis director) / Konstantinos, Tsakalis (Committee member) / Fricks, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05