Matching Items (12)
Filtering by

Clear all filters

168607-Thumbnail Image.png
Description
GaAs thermophotovoltaic (TPV) devices with a patterned dielectric back contact (PDBC) architecture, featuring a dielectric spacer between the semiconductor and back metal contact over most of the back surface for high reflectance, and metal point contacts over a smaller area for electrical conduction were demonstrated. In the TPV application, high

GaAs thermophotovoltaic (TPV) devices with a patterned dielectric back contact (PDBC) architecture, featuring a dielectric spacer between the semiconductor and back metal contact over most of the back surface for high reflectance, and metal point contacts over a smaller area for electrical conduction were demonstrated. In the TPV application, high sub-bandgap reflectance is needed to reflect unused sub-bandgap photons to the thermal emitter to minimize energy losses in this portion of the thermal spectrum. Different PDBC fabrication processes with SU-8 and SiO2 dielectric spacer layers to maximize sub-bandgap reflectance while minimizing series resistance to increase TPV conversion efficiency was explored. GaAs SU-8 PDBC TPV devices with 2200°C blackbody-weighted sub-bandgap reflectance of 94.9% and 96.5% with and without a front metal grid, respectively were demonstrated. This was 0.7% and 2.3% (absolute) higher than the mean sub-bandgap reflectance of 94.2% for GaAs baseline TPV devices with 100% Au back contact with a front metal grid. Lower sub-bandgap reflectance in TPV devices with front grids indicated the front grid induced light scattering led to additional parasitic absorption in the TPV device. For higher contact coverage fractions, the PDBC reflectance cannot, in general, be treated by linear interpolation of the mirror and point-contact areas using simple 1D transfer matrix method modeling and should be treated instead as a diffraction grating by solving Maxwell's equations in 3D. GaAs PDBC TPV device with series resistance less than 10 mΩ·cm2 was demonstrated. Finally, GaAs PDBC TPV device with 22.8% TPV efficiency measured in a thermophotovoltaic test platform with the thermal emitter at 2100℃ was demonstrated
ContributorsArulanandam, Madhan Kumar (Author) / King, Richard R. (Thesis advisor) / Steiner, Myles A. (Committee member) / Newman, Nathan (Committee member) / Honsberg, Christiana (Committee member) / Arizona State University (Publisher)
Created2022
157167-Thumbnail Image.png
Description
In this dissertation, I investigate the electronic properties of two important silicon(Si)-based heterojunctions 1) hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) which has already been commercialized in Heterojunction with Intrinsic Thin-layer (HIT) cells and 2) gallium phosphide/silicon (GaP/Si) which has been suggested to be a good candidate for replacing a-Si:H/c-Si in HIT

In this dissertation, I investigate the electronic properties of two important silicon(Si)-based heterojunctions 1) hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) which has already been commercialized in Heterojunction with Intrinsic Thin-layer (HIT) cells and 2) gallium phosphide/silicon (GaP/Si) which has been suggested to be a good candidate for replacing a-Si:H/c-Si in HIT cells in order to boost the HIT cell’s efficiency.

In the first part, the defect states of amorphous silicon (a-Si) and a-Si:H material are studied using density functional theory (DFT). I first employ simulated annealing using molecular dynamics (MD) to create stable configurations of a-Si:H, and then analyze the atomic and electronic structure to investigate which structural defects interact with H, and how the electronic structure changes with H addition. I find that H atoms decrease the density of mid-gap states and increase the band gap of a-Si by binding to Si atoms with strained bonds. My results also indicate that Si atoms with strained bonds creates high-localized orbitals in the mobility gap of a-Si, and the binding of H atoms to them can dramatically decrease their degree of localization.



In the second part, I explore the effect of the H binding configuration on the electronic properties of a-Si:H/c-Si heterostructure using density functional theory studies of models of the interface between a-Si:H and c-Si. The electronic properties from DFT show that depending on the energy difference between configurations, the electronic properties are sensitive to the H binding configurations.

In the last part, I examine the electronic structure of GaP/Si(001) heterojunctions and the effect of hydrogen H passivation at the interface in comparison to interface mixing, through DFT calculations. My calculations show that due to the heterovalent mismatch nature of the GaP/Si interface, there is a high density of localized states at the abrupt GaP/Si interface due to the excess charge associated with heterovalent bonding, as reported elsewhere. I find that the addition of H leads to additional bonding at the interface which mitigates the charge imbalance, and greatly reduces the density of localized states, leading to a nearly ideal heterojunction.
ContributorsVatan Meidanshahi, Reza (Author) / Goodnick, Stephen Marshall (Thesis advisor) / Vasileska, Dragica (Committee member) / Bowden, Stuart (Committee member) / Honsberg, Christiana (Committee member) / Arizona State University (Publisher)
Created2019