Matching Items (36)
Filtering by

Clear all filters

150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
133732-Thumbnail Image.png
Description
As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN

As threats to Earth's biodiversity continue to evolve, an effective methodology to predict such threats is crucial to ensure the survival of living species. Organizations like the International Union for Conservation of Nature (IUCN) monitor the Earth's environmental networks to preserve the sanctity of terrestrial and marine life. The IUCN Red List of Threatened Species informs the conservation activities of governments as a world standard of species' risks of extinction. However, the IUCN's current methodology is, in some ways, inefficient given the immense volume of Earth's species and the laboriousness of its species' risk classification process. IUCN assessors can take years to classify a species' extinction risk, even as that species continues to decline. Therefore, to supplement the IUCN's classification process and thus bolster conservationist efforts for threatened species, a Random Forest model was constructed, trained on a group of fish species previously classified by the IUCN Red List. This Random Forest model both validates the IUCN Red List's classification method and offers a highly efficient, supplemental classification method for species' extinction risk. In addition, this Random Forest model is applicable to species with deficient data, which the IUCN Red List is otherwise unable to classify, thus engendering conservationist efforts for previously obscure species. Although this Random Forest model is built specifically for the trained fish species (Sparidae), the methodology can and should be extended to additional species.
ContributorsWoodyard, Megan (Author) / Broatch, Jennifer (Thesis director) / Polidoro, Beth (Committee member) / Mancenido, Michelle (Committee member) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137211-Thumbnail Image.png
Description
Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range

Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range of plant and animal species in both continuous and episodic fashions. This study aimed to gain a better understanding of the relationship between streamflow permanence and patterns of biomass and secondary production of the riparian fauna these ecosystems support. This was accomplished through a yearlong survey in the Huachuca Mountains of Southeastern, Arizona where macroinvertebrates were collected at various sites along a gradient of streamflow permanence before, during, and after the three month monsoon season that supplies most of the annual rainfall in this region. The results of my surveys indicate that 1) Sites characterized by low streamflow permanence were more responsive to changes in precipitation than sites characterized by relatively high streamflow permanence 2) In ephemeral streams, there is a significant peak in terrestrial macroinvertebrate production and biomass both during and after the monsoon season 3) streamflow permanence may convey consistent but not exceptional secondary production whereas seasonality in rainfall may convey exceptional but episodic secondary production—more so in sites where streamflow is not consistent.
ContributorsMcCartin, Michael Patrick (Author) / Sabo, John (Thesis director) / Stromberg, Juliet (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
154914-Thumbnail Image.png
Description
There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives

There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives animal development, physiology, and behavior, yet the influence hydration has on immunity has received limited attention. In particular, hydration state may have the greatest potential to drive fluctuations in immunity and other physiological functions in species that live in water-limited environments where they may experience periods of dehydration. To shed light on the sensitivity of immune function to hydration state, I first tested the effect of hydration states (hydrated, dehydrated, and rehydrated) and digestive states on innate immunity in the Gila monster, a desert-dwelling lizard. Though dehydration is often thought to be stressful and, if experienced chronically, likely to decrease immune function, dehydration elicited an increase in immune response in this species, while digestive state had no effect. Next, I tested whether dehydration was indeed stressful, and tested a broader range of immune measures. My findings validated the enhanced innate immunity across additional measures and revealed that Gila monsters lacked a significant stress hormone response during dehydration (though results were suggestive). I next sought to test if life history (in terms of environmental stability) drives these differences in dehydration responses using a comparative approach. I compared four confamilial pairs of squamate species that varied in habitat type within each pair—four species that are adapted to xeric environments and four that are adapted to more mesic environments. No effect of life history was detected between groups, but hydration was a driver of some measures of innate immunity and of stress hormone concentrations in multiple species. Additionally, species that exhibited a stress response to dehydration did not have decreased innate immunity, suggesting these physiological responses may often be decoupled. My dissertation work provides new insight into the relationship between hydration, stress, and immunity, and it may inform future work exploring disease transmission or organismal responses to climate change.
ContributorsMoeller, Karla T (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / French, Susannah (Committee member) / Rutowski, Ronald (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
155051-Thumbnail Image.png
Description
Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which

Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which nitrate is reduced to N2 gas permanently removing nitrate from systems— can occur. Accidental urban wetlands– wetlands that results from human activities, but are not designed or managed for any specific outcome¬– are one such feature in the urban landscape that could help mitigate nitrate pollution through denitrification.

The overarching question of this dissertation is: how do hydrology, soil conditions, and plant patches affect patterns of denitrification in accidental urban wetlands? To answer this question, I took a three-pronged approach using a combination of field and greenhouse studies. First, I examined drivers of broad patterns of denitrification in accidental urban wetlands. Second, I used a field study to test if plant traits influence denitrification indirectly by modifying soil resources. Finally, I examined how species richness and interactions between species influence nitrate retention and patterns of denitrification using both a field study and greenhouse experiment.

Hydroperiod of accidental urban wetlands mediated patterns of denitrification in response to monsoon floods and plant patches. Specifically, ephemeral wetlands had patterns of denitrification that were largely unexplained by monsoon floods or plant patches, which are common drivers of patterns of denitrification in non-urban wetlands. Several plant traits including belowground biomass, above- and belowground tissue chemistry and rooting depth influenced denitrification indirectly by changing soil organic matter or soil nitrate. However, several other plant traits also had significant direct relationships with denitrification, (i.e. not through the hypothesized indirect relationships through soil organic matter or soil nitrate). This means these plant traits were affecting another aspect of soil conditions not included in the analysis, highlighting the need to improve our understanding of how plant traits influence denitrification. Finally, increasing species richness did not increase nitrate retention or denitrification, but rather individual species had the greatest effects on nitrate retention and denitrification.
ContributorsSuchy, Amanda Klara (Author) / Childers, Daniel L. (Thesis advisor) / Stromberg, Juliet C. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
155626-Thumbnail Image.png
Description
Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the

Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the vegetative community pose a great challenge to such balance between an organism and its environment. This is especially true in the Arabian Desert, where climate conditions are extreme and environmental disturbances substantial. This study combined laboratory and field components to enhance our understanding of dhub (Uromastyx aegyptius) ecophysiology and determine whether habitat protection influences dhub behavior and physiology.

Results of this study showed that while body mass and body condition consistently diminished as the active season progressed, they were both greater in protected habitats compared to non-protected habitats, regardless of season. Dhubs surface activity and total body water decreased while evaporative water loss and body temperature increased as the active season progressed and ambient temperature got hotter. Total body water was also significantly affected by habitat protection.

Overall, this study revealed that, while habitat protection provided more vegetation, it had little effect on seasonal changes in surface activity. While resource availability in protected areas might allow for larger dhub populations, unprotected areas showed similar body morphometrics, activity, and body temperatures. By developing an understanding of how different coping strategies are linked to particular ecological, morphological, and phylogenetic traits, we will be able to make more accurate predictions regarding the vulnerability of species. By combining previous studies pertaining to conservation of protected species with the results of my study, a number of steps in ecosystem management are recommended to help in the preservation of dhubs in the Kuwaiti desert.
ContributorsAl-Sayegh, Mohammed (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / Smith, Andrew (Committee member) / Sabo, John (Committee member) / Majeed, Qais (Committee member) / Arizona State University (Publisher)
Created2017
148475-Thumbnail Image.png
Description

As the world’s population exponentially grows, more food production is required. This increasing food production currently has led to the un-sustainable production of chemical fertilizers and resultant overuse. A more sustainable option to enhance food production could be the use of fertilizer derived from food waste. To address this, we

As the world’s population exponentially grows, more food production is required. This increasing food production currently has led to the un-sustainable production of chemical fertilizers and resultant overuse. A more sustainable option to enhance food production could be the use of fertilizer derived from food waste. To address this, we investigated the possibility of utilizing a fertilizer derived from food waste to grow hydroponic vegetables. Arugula (Eruca sativa) ‘Slow Bolt’ and lettuce (Lactuca sativa) ‘Cherokee’ and ‘Rex’ were cultivated using indoor deep-flow hydroponic systems at 23 ºC under a photosynthetic photon flux density of 170 µmol∙m−2∙s−1 with an 18-hour photoperiod. Plant nutrient solutions were provided by food waste fertilizer or commercial 15:5:20 NPK fertilizer at the identical electrical conductivity (EC) of 2.3 mS·cm–1. At the EC of 2.3 mS·cm–1, chemical fertilizer contained 150 ppm N, 50 ppm P, and 200 ppm K, while food waste fertilizer had 60 ppm N, 26 ppm P, and 119 ppm K. Four weeks after the nutrient treatments were implemented, compared to plants grown with chemical fertilizer, lettuce ‘Rex’ grown with food waste fertilizer had four less leaves, 27.1% shorter leaves, 68.2% and 23.1% less shoot and root fresh weight, respectively. Lettuce ‘Cherokee’ and arugula grown with food waste fertilizer followed a similar trend with fresh shoot weights that were 80.1% and 95.6% less compared to the chemical fertilizer, respectively. In general, the magnitude of reduction in the plant growth was greatest in arugula. These results suggest that both fertilizers were able to successfully grow lettuce and arugula, although the reduced plant growth with the food waste fertilizer in our study is likely from a lower concentration of nutrients when we considered EC as an indicator of nutrient concentration equivalency of the two fertilizer types.

ContributorsCherry, Hannah Nichole (Author) / Park, Yujin (Thesis director) / Penton, Ryan (Committee member) / Chen, Zhihao (Committee member) / Environmental and Resource Management (Contributor, Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This podcast explores the life of Cendraini, growing up in the developing country of Indonesia as well as her eventual immigration to America. It delves into prominent topics and history of Indonesia in regards to Cen's life. The podcast focuses on family, and how no matter the challenges that life

This podcast explores the life of Cendraini, growing up in the developing country of Indonesia as well as her eventual immigration to America. It delves into prominent topics and history of Indonesia in regards to Cen's life. The podcast focuses on family, and how no matter the challenges that life may bring, family will be there for you.

ContributorsGoldstein, Rachel (Author) / Schmidt, Peter (Thesis director) / Levin, Irina (Committee member) / School of International Letters and Cultures (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147712-Thumbnail Image.png
Description

Health and Wealthness is a podcast where your hosts, Emily Weigel and Hanaa Khan discuss pressing and trending topics about health and wealth that everyone should know about. Our first four episodes focus on the opioid crisis. Both the science and healthcare sides. We then go on to talk about

Health and Wealthness is a podcast where your hosts, Emily Weigel and Hanaa Khan discuss pressing and trending topics about health and wealth that everyone should know about. Our first four episodes focus on the opioid crisis. Both the science and healthcare sides. We then go on to talk about burnout and mental health in a conversational episode.

ContributorsKhan, Hanaa S (Co-author) / Weigel, Emily (Co-author) / Olive, Foster (Thesis director) / Bonfiglio, Thomas (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Various forms of media have contributed to and shaped negative perception of immigrants and refugees in the United States. These perceptions may contribute to dangerous stereotyping, which may impact policy and the daily life of immigrants in the United States. Various factors must be considered when analyzing media, such as

Various forms of media have contributed to and shaped negative perception of immigrants and refugees in the United States. These perceptions may contribute to dangerous stereotyping, which may impact policy and the daily life of immigrants in the United States. Various factors must be considered when analyzing media, such as the type of media, language used, consumption, and the reaction of viewers. This thesis focuses on AZcentral, an Arizona news source, and how it portrays immigrants versus the commentary from an immigrant here in Arizona. First it is important to look at time periodization of the portrayal of immigrants and how it has changed through technology mediums. The information obtained by looking at these periods provide specific terms and content to look for when collecting sources for the podcast. In the podcast, AZcentral and the interviewee stories are compared to show how different or similar they may be. Through this, the audience should be making their own conclusions to show accurate AZcentral is portraying the immigrant experience.

ContributorsHoff, Jordyn (Author) / O’Flaherty, Katherine (Thesis director) / Schmidt, Peter (Committee member) / Barrett, The Honors College (Contributor) / School of Community Resources and Development (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2023-05