Matching Items (30)
Filtering by

Clear all filters

Description

This podcast explores the life of Cendraini, growing up in the developing country of Indonesia as well as her eventual immigration to America. It delves into prominent topics and history of Indonesia in regards to Cen's life. The podcast focuses on family, and how no matter the challenges that life

This podcast explores the life of Cendraini, growing up in the developing country of Indonesia as well as her eventual immigration to America. It delves into prominent topics and history of Indonesia in regards to Cen's life. The podcast focuses on family, and how no matter the challenges that life may bring, family will be there for you.

ContributorsGoldstein, Rachel (Author) / Schmidt, Peter (Thesis director) / Levin, Irina (Committee member) / School of International Letters and Cultures (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151183-Thumbnail Image.png
Description
Prehistoric farmers in the semi-arid American Southwest were challenged by marked spatial and temporal variation in, and overall low levels of, precipitation with which to grow their crops. One strategy they employed was to modify their landscape with rock alignments in order to concentrate surface water flow on their fields.

Prehistoric farmers in the semi-arid American Southwest were challenged by marked spatial and temporal variation in, and overall low levels of, precipitation with which to grow their crops. One strategy they employed was to modify their landscape with rock alignments in order to concentrate surface water flow on their fields. A second challenge that has been less focused on by archaeologists is the need to maintain soil fertility by replenishing nutrients removed from the soil by agricultural crops. Numerous studies have shown that rock alignments can result in long-lasting impacts on soil properties and fertility. However, the direction and magnitude of change is highly variable. While previous work has emphasized the importance of overland flow in replenishing soil nutrient pools, none have investigated the influence of eolian deposition as a contributor of mineral-derived nutrients. This thesis explores the effects of the construction of rock alignments, agricultural harvest, and eolian deposition on soil properties and fertility on Perry Mesa within the Agua Fria National Monument. This site experienced dramatic population increase in the late 1200s and marked depopulation in the early 1400s. Since that time, although agriculture ceased, the rock alignments have remains, continuing to influence runoff and sediment deposition. In the summer of 2009, I investigated deep soil properties and mineral-derived nutrients on fields near Pueblo La Plata, one of the largest pueblos on Perry Mesa. To examine the effects of rock alignments and agricultural harvest independent of one another, I sampled soils from replicated plots behind alignments paired with nearby plots that are not bordered by an alignment in both areas of high and low prehistoric agricultural intensity. I investigated soil provenance and the influence of deposition on mineral-derived nutrients through analysis of the chemical composition of the soil, bedrock and dust. Agricultural rock alignments were significantly associated with differences in soil texture, but neither rock alignments nor agricultural history were associated with significant differences in mineral-derived nutrients. Instead, eolian deposition may explain why nutrient pools are similar across agricultural history and rock alignment presence. Eolian deposition homogenized the surface soil, reducing the spatial heterogeneity of soils. Dust is important both as a parent material to the soils on Perry Mesa, and also a source of mineral-derived nutrients. This investigation suggests that prehistoric agriculture on Perry Mesa was not likely limited by long term soil fertility, but instead could have been sustained by eolian inputs.
ContributorsNakase, Dana Kozue (Author) / Hall, Sharon (Thesis advisor) / Spielmann, Katherine (Committee member) / Hartshorn, Anthony (Committee member) / Arizona State University (Publisher)
Created2012
147712-Thumbnail Image.png
Description

Health and Wealthness is a podcast where your hosts, Emily Weigel and Hanaa Khan discuss pressing and trending topics about health and wealth that everyone should know about. Our first four episodes focus on the opioid crisis. Both the science and healthcare sides. We then go on to talk about

Health and Wealthness is a podcast where your hosts, Emily Weigel and Hanaa Khan discuss pressing and trending topics about health and wealth that everyone should know about. Our first four episodes focus on the opioid crisis. Both the science and healthcare sides. We then go on to talk about burnout and mental health in a conversational episode.

ContributorsKhan, Hanaa S (Co-author) / Weigel, Emily (Co-author) / Olive, Foster (Thesis director) / Bonfiglio, Thomas (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148475-Thumbnail Image.png
Description

As the world’s population exponentially grows, more food production is required. This increasing food production currently has led to the un-sustainable production of chemical fertilizers and resultant overuse. A more sustainable option to enhance food production could be the use of fertilizer derived from food waste. To address this, we

As the world’s population exponentially grows, more food production is required. This increasing food production currently has led to the un-sustainable production of chemical fertilizers and resultant overuse. A more sustainable option to enhance food production could be the use of fertilizer derived from food waste. To address this, we investigated the possibility of utilizing a fertilizer derived from food waste to grow hydroponic vegetables. Arugula (Eruca sativa) ‘Slow Bolt’ and lettuce (Lactuca sativa) ‘Cherokee’ and ‘Rex’ were cultivated using indoor deep-flow hydroponic systems at 23 ºC under a photosynthetic photon flux density of 170 µmol∙m−2∙s−1 with an 18-hour photoperiod. Plant nutrient solutions were provided by food waste fertilizer or commercial 15:5:20 NPK fertilizer at the identical electrical conductivity (EC) of 2.3 mS·cm–1. At the EC of 2.3 mS·cm–1, chemical fertilizer contained 150 ppm N, 50 ppm P, and 200 ppm K, while food waste fertilizer had 60 ppm N, 26 ppm P, and 119 ppm K. Four weeks after the nutrient treatments were implemented, compared to plants grown with chemical fertilizer, lettuce ‘Rex’ grown with food waste fertilizer had four less leaves, 27.1% shorter leaves, 68.2% and 23.1% less shoot and root fresh weight, respectively. Lettuce ‘Cherokee’ and arugula grown with food waste fertilizer followed a similar trend with fresh shoot weights that were 80.1% and 95.6% less compared to the chemical fertilizer, respectively. In general, the magnitude of reduction in the plant growth was greatest in arugula. These results suggest that both fertilizers were able to successfully grow lettuce and arugula, although the reduced plant growth with the food waste fertilizer in our study is likely from a lower concentration of nutrients when we considered EC as an indicator of nutrient concentration equivalency of the two fertilizer types.

ContributorsCherry, Hannah Nichole (Author) / Park, Yujin (Thesis director) / Penton, Ryan (Committee member) / Chen, Zhihao (Committee member) / Environmental and Resource Management (Contributor, Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136299-Thumbnail Image.png
Description
Water is the main driver of net primary productivity (NPP) in arid ecosystems, followed by nitrogen and phosphorous. Precipitation is the primary factor in determining water availability to plants, but other factors such as surface rocks could also have an impact. Surface rocks may positively affect water availability by preventing

Water is the main driver of net primary productivity (NPP) in arid ecosystems, followed by nitrogen and phosphorous. Precipitation is the primary factor in determining water availability to plants, but other factors such as surface rocks could also have an impact. Surface rocks may positively affect water availability by preventing evaporation from soil, but at higher densities, surface rocks may also have a negative impact on water availability by limiting water infiltration or light availability. However, the direct relationship between rock cover and aboveground net primary productivity (ANPP), a proxy for NPP, is not well understood. In this research we explore the relationship between rock cover, ANPP, and soil nutrient availability. We conducted a rock cover survey on long-term fertilized plots at fifteen sites in the Sonoran Desert and used 4 years of data from annual plant biomass surveys to determine the relationship between peak plant biomass and surface rock cover. We performed factorial ANCOVA to assess the relationship among annual plant biomass, surface rocks, precipitation, and fertilization treatment. Overall we found that precipitation, nutrients, and rock cover influence growth of Sonoran Desert annual plants. Rock cover had an overall negative relationship with annual plant biomass, but did not show a consistent pattern of significance over four years of study and with varying average winter precipitation.
ContributorsShaw, Julea Anne (Author) / Hall, Sharon (Thesis director) / Sala, Osvaldo (Committee member) / Cook, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
131792-Thumbnail Image.png
Description
In 2019 the beauty industry was valued at $532 billion and is continuing to grow at lightning pace (Biron). Clearly, the beauty industry is profitable, so why have so few people bothered to study it? In the Barrett thesis database, as of 2020 there were less than half a

In 2019 the beauty industry was valued at $532 billion and is continuing to grow at lightning pace (Biron). Clearly, the beauty industry is profitable, so why have so few people bothered to study it? In the Barrett thesis database, as of 2020 there were less than half a dozen theses addressing the cosmetic industry, compared to nearly 50 projects concerning football. In response to the lack of study in academics and general public knowledge concerning the history and impact of cosmetics, the multi-part podcast series, Making Ourselves Up: The History and Impact of Cosmetics/Makeup was created by Kaley Scott, a fashion and sociology student. The personal nature of makeup and cosmetics, making the intimate forum of a podcast the perfect medium. The podcast operates in five episodes. First is: Making Ourselves Up, Makeup Fueling our Memories and Selfhood which contains personal narratives of makeup through interviews, establishing the intimate and wide-reaching effects of cosmetics and makeup. The second and third episodes: How We’ve Made Ourselves Up, from Cleopatra to Helena Rubenstein and How We’ve Made Ourselves Up, from Elizabeth Arden to Glossier cover the entirety of the history of makeup and cosmetics, focusing on western beauty. The third episode: Making Faces, Applying Makeup, the Theories that Let Us Create which focuses on techniques and theories of color and makeup application. Lastly is, Making Change, Cosmetics as a Current of Social Change which reveals how cosmetics have led to social change and continue to allow us to reinvent our society and ourselves. Makeup and cosmetics have been incredibly important for the creator for much of her life and she created this project with the aim of proving how important they are to the rest of the world.
ContributorsScott, Kaley Wynter (Author) / Sewell, Dennita (Thesis director) / Aiello, Diane (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
My thesis/creative project is a series of videos, supplemented by a paper documenting all the research. The project focuses on domestic and feral cats through the viewpoint of the “warrior cats” book series. The use of a particular fandom as a vehicle for science communication is a unique platform for

My thesis/creative project is a series of videos, supplemented by a paper documenting all the research. The project focuses on domestic and feral cats through the viewpoint of the “warrior cats” book series. The use of a particular fandom as a vehicle for science communication is a unique platform for use as a thesis/creative project. The narrated videos are made with the intention of being presented on YouTube or a similar viewing platform to an audience that is already familiar with the book series. The videos would fit on the site as a form of educational film known as video essays. The videos cover a range of topics to relate this book series to real situations with domestic animals, particularly cats, and wildlife. Each video is around ten to twenty minutes long and presented as episodes in a series.
The objective of my thesis project is to help bridge the gap between entertainment and science. I grew up reading the warrior cats, and I assume I was similar to many other children and young teens who did not understand domestic cats or ecology enough to question anything in the books. I know that much of these books are fictional, but that does not mean that it can’t be analyzed and used as a tool for teaching. The goal is to reach common ground with those people who have an interest in the warrior cats series, and help them understand it in a new light, as well as the world around them. I aim for the takeaway of this series to encourage people to explore the concepts I discuss and consider expanding upon the ideas within the Warriors universe or with their own cats.
ContributorsGarcia, Johnny Nico (Author) / Bateman, Heather (Thesis director) / Meloy, Elizabeth (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132483-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed in the field, except a few being tested on a limited scale. Bats have lowered immune function and response during hibernation, which may increase susceptibility to infection during the winter months. Antimicrobial peptides (AMPs) are a crucial component of the innate immune system and serve as barriers against infection. AMPs are constitutively expressed on skin and facilitate wound healing, stimulate other immune responses, and may also stay active on bat skin during hibernation. AMPs are expressed by all tissues, have direct killing abilities against microbes, and are a potential treatment for bats infected with Pd. In this investigation, the fungicidal activity of several readily available commercial AMPs were compared, and killing assay protocols previously investigated by Frasier and Lake were replicated to establish a control trial for use in future killing assays. Another aim of this investigation was to synthesize a bat-derived AMP for use in the killing assay. Sequences of bat-derived AMPs have been identified in bat skin samples obtained from a large geographic sampling of susceptible and resistant species. Contact was made with GenScript Inc., the company from which commercially available AMPs were purchased, to determine the characteristics of peptide sequences needed to synthesize an AMP for lab use. Based on recommendations from GenScript Inc., peptide sequences need to have a hydrophobicity of less than 50% and a sequence length of less than 50 amino acids. These criteria serve as a potential barrier because none of the known bat-derived sequences analyzed satisfy both of these requirements. The final aim of this study was to generate a conceptual model of the immune response molecules activated when bats are exposed to a fungal pathogen such as Pd. Overall, this work investigated sources of variability between trials of the killing assay, analyzed known bat-derived peptide sequences, and generated a conceptual model that will serve as a guideline for identification of immune response molecules on the skin of bats in future proteomics work.
ContributorsBarton, Madisen L (Author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133500-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
ContributorsFrazier, Eric (Co-author) / Lake, Alexis M. (Co-author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133503-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
ContributorsLake, Alexis (Co-author) / Frazier, Eric (Co-author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / W.P. Carey School of Business (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05