Matching Items (9)
Filtering by

Clear all filters

133588-Thumbnail Image.png
Description
With the new independence of adulthood, college students are a group susceptible to adopting unsupported, if not harmful, health practices. A survey of Arizona State University undergraduate students (N=200) was conducted to evaluate supplement use, trust in information sources, and beliefs about supplement regulation. Of those who reported using supplements,

With the new independence of adulthood, college students are a group susceptible to adopting unsupported, if not harmful, health practices. A survey of Arizona State University undergraduate students (N=200) was conducted to evaluate supplement use, trust in information sources, and beliefs about supplement regulation. Of those who reported using supplements, college students most frequently received information from friends and family. STEM majors in fields unrelated to health who were taking a supplement were found to be less likely to receive information about the supplement from a medical practitioner than those in health fields or those in non-STEM majors (-26.9%, p=0.018). STEM majors in health-related fields were 15.0% more likely to treat colds and/or cold symptoms with research-supported methods identified from reliable sources, while non-health STEM and non-STEM majors were more likely to take unsupported cold treatments (p=0.010). Surveyed students, regardless of major, also stated they would trust a medical practitioner for supplement advice above other sources (88.0%), and the majority expressed a belief that dietary supplements are approved/regulated by the government (59.8%).
ContributorsPerez, Jacob Tanner (Author) / Hendrickson, Kirstin (Thesis director) / Lefler, Scott (Committee member) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155806-Thumbnail Image.png
Description
In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve

In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve the necessary limb accelerations and output energies. Rapid growth in information technology has made complex controllers, and the devices which run them considerably light and cheap. The energy density of batteries, motors, and engines has not grown nearly as fast. This is problematic because biological systems are more agile, and more efficient than robotic systems. This dissertation introduces design methods which may be used optimize a multiactuator robotic limb's natural dynamics in an effort to reduce energy waste. These energy savings decrease the robot's cost of transport, and the weight of the required fuel storage system. To achieve this, an optimal design method, which allows the specialization of robot geometry, is introduced. In addition to optimal geometry design, a gearing optimization is presented which selects a gear ratio which minimizes the electrical power at the motor while considering the constraints of the motor. Furthermore, an efficient algorithm for the optimization of parallel stiffness elements in the robot is introduced. In addition to the optimal design tools introduced, the KiTy SP robotic limb structure is also presented. Which is a novel hybrid parallel-serial actuation method. This novel leg structure has many desirable attributes such as: three dimensional end-effector positioning, low mobile mass, compact form-factor, and a large workspace. We also show that the KiTy SP structure outperforms the classical, biologically-inspired serial limb structure.
ContributorsCahill, Nathan M (Author) / Sugar, Thomas (Thesis advisor) / Ren, Yi (Thesis advisor) / Holgate, Matthew (Committee member) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
148201-Thumbnail Image.png
Description

Fluoroquinolone antibiotics have been known to cause severe, multisystem adverse side effects, termed fluoroquinolone toxicity (FQT). This toxicity syndrome can present with adverse effects that vary from individual to individual, including effects on the musculoskeletal and nervous systems, among others. The mechanism behind FQT in mammals is not known, although

Fluoroquinolone antibiotics have been known to cause severe, multisystem adverse side effects, termed fluoroquinolone toxicity (FQT). This toxicity syndrome can present with adverse effects that vary from individual to individual, including effects on the musculoskeletal and nervous systems, among others. The mechanism behind FQT in mammals is not known, although various possibilities have been investigated. Among the hypothesized FQT mechanisms, those that could potentially explain multisystem toxicity include off-target mammalian topoisomerase interactions, increased production of reactive oxygen species, oxidative stress, and oxidative damage, as well as metal chelating properties of FQs. This review presents relevant information on fluoroquinolone antibiotics and FQT and explores the mechanisms that have been proposed. A fluoroquinolone-induced increase in reactive oxygen species and subsequent oxidative stress and damage presents the strongest evidence to explain this multisystem toxicity syndrome. Understanding the mechanism of FQT in mammals is important to aid in the prevention and treatment of this condition.

ContributorsHall, Brooke Ashlyn (Author) / Redding, Kevin (Thesis director) / Wideman, Jeremy (Committee member) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
162274-Thumbnail Image.png
Description

U.S. border colonias, otherwise known as Disadvantaged Unincorporated Communities, are rural settlements along the U.S. Mexico border with substandard housing conditions. Colonia residents often face inadequate access to necessities such as appropriate shelter, septic and sewer systems, and potable water. Water insecurity in colonias poses a particularly difficult challenge for

U.S. border colonias, otherwise known as Disadvantaged Unincorporated Communities, are rural settlements along the U.S. Mexico border with substandard housing conditions. Colonia residents often face inadequate access to necessities such as appropriate shelter, septic and sewer systems, and potable water. Water insecurity in colonias poses a particularly difficult challenge for residents who require clean water not only for consumption, but also household use in sanitation and hygienic practices. As of 2015, an estimated 30% of over five million US colonia residents lack access to clean drinking water, resulting in health complications and unsanitary living conditions. Preliminary health data collected indicates that due to water insecurity, colonia residents are more likely to contract gastrointestinal disease, be exposed to carcinogenic compounds from contaminated water, and experience psychosocial distress. Yet more comprehensive research needs to be conducted to understand the full breadth of the public health issue. A scoping review on water insecurity in colonias has not been completed before and could be beneficial in informing policymakers and other stakeholders on the severity of the situation while advising possible solutions.

ContributorsZheng, Madeleine (Author) / Wutich, Amber (Thesis director) / Brewis, Alexandra (Committee member) / Kavouras, Stavros (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2021-12
131404-Thumbnail Image.png
Description
As of March 2020, there were over 112,400 patients actively waiting on the United States national organ transplant waitlist with only about 3,300 donors1. Although transplantation is an effective treatment for end-stage organ failure, the access to a procedure will vary depending on national regulations, cost of health care, extensive

As of March 2020, there were over 112,400 patients actively waiting on the United States national organ transplant waitlist with only about 3,300 donors1. Although transplantation is an effective treatment for end-stage organ failure, the access to a procedure will vary depending on national regulations, cost of health care, extensive screening processes, and the availability of organs2. Organ shortage is a worldwide problem, and the growing insufficiency has resulted patients becoming too for ill or dying while waiting3. Due to the varying wait times and costs of procedures, some patients have begun to outsource their own transplantation through international transactions, also known as transplant tourism2. The 2004 World Health Assembly resolution recognized these trades as a significant health policy issue, while also acknowledging the inability of national health care systems to meet the needs of patients4. To address this issue, a proposal will be made such that all live kidney and liver donors will be compensated $22,500 and $12,150 respectively through a cost-neutral scheme based on annual healthcare expenditures per organ that would be eliminated by a transplant. With this proposal, it is suggested that the organ transplant waitlist would not only be significantly reduced, but potentially eliminated, and the crisis of organ shortage would be defeated.
ContributorsMartin, Starla (Author) / Kingsbury, Jeffrey (Thesis director) / Edmonds, Hallie (Committee member) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165676-Thumbnail Image.png
Description
The Founder’s lab is a year-long program that gives students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This Barrett honors thesis

The Founder’s lab is a year-long program that gives students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This Barrett honors thesis project focuses on increasing the accessibility of health and wellness programs for small businesses and their employees through a customizable and easily implemented third party program that encourages employee retention.
ContributorsSharifi, Megan (Author) / Chiarello, Allyssa (Co-author) / Germer, Brendan (Co-author) / Kwapiszeski, Jacob (Co-author) / Byrne, Jared (Thesis director) / Larson, Wiley (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05
165750-Thumbnail Image.png
Description

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has the potential to assess community health status by analyzing biomarkers indicative of human health and disease, including diabetes. Used in tandem with current methods, monitoring indicators of diabetes in community wastewater could provide a comprehensive assessment tool for disease prevalence in large and small populations. Specifically, the proposed targeted biomarker evaluated in this study to indicate population-wide diabetes prevalence was 8-hydroxy-2’- deoxyguanosine (8-OHdG). This work combines a rigorous literature review and initial laboratory studies to explore the possibility of diabetes monitoring at the community level using WBE. Here, 24-hour composite wastewater samples were collected from within two wastewater sub-catchments of Greater Tempe, AZ. Overall goals of this study were to: i) Determine the feasibility to detect endogenous markers of diabetes in community wastewater; ii) Assess the potential impact of confounding factors, such as smoking, cancer, and atherosclerosis, through a literature analysis; and iii) Evaluate the socioeconomic status and demographics of the study population. Preliminary results of the experiments suggest this methodology to be feasible, as indicated by the observation of detectable signals of 8-OHdG in community wastewater collected from the sewer infrastructure; however, future work and continued experimentation will be required to address low signal intensity and assay precision and accuracy. Thus, the work presented here provides valuable proof-of-concept data, with detailed information on the method employed and identified opportunities to further determine the relationship between 8-OHdG concentrations in municipal wastewater and diabetes prevalence at the community level.

ContributorsNguyen, Jasmine (Author) / John, Dona (Co-author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Bowes, Devin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor)
Created2022-05
165754-Thumbnail Image.png
Description

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has the potential to assess community health status by analyzing biomarkers indicative of human health and disease, including diabetes. Used in tandem with current methods, monitoring indicators of diabetes in community wastewater could provide a comprehensive assessment tool for disease prevalence in large and small populations. Specifically, the proposed targeted biomarker evaluated in this study to indicate population-wide diabetes prevalence was 8-hydroxy-2’-deoxyguanosine (8-OHdG). This work combines a rigorous literature review and initial laboratory studies to explore the possibility of diabetes monitoring at the community level using WBE. Here, 24-hour composite wastewater samples were collected from within two wastewater sub-catchments of Greater Tempe, AZ. Overall goals of this study were to: i) Determine the feasibility to detect endogenous markers of diabetes in community wastewater; ii) Assess the potential impact of confounding factors, such as smoking, cancer, and atherosclerosis, through a literature analysis; and iii) Evaluate the socioeconomic status and demographics of the study population. Preliminary results of the experiments suggest this methodology to be feasible, as indicated by the observation of detectable signals of 8-OHdG in community wastewater collected from the sewer infrastructure; however, future work and continued experimentation will be required to address low signal intensity and assay precision and accuracy. Thus, the work presented here provides valuable proof-of-concept data, with detailed information on the method employed and identified opportunities to further determine the relationship between 8-OHdG concentrations in municipal wastewater and diabetes prevalence at the community level.

ContributorsJohn, Dona (Author) / Nguyen, Jasmine (Co-author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Bowes, Devin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-05