Matching Items (189)
Filtering by

Clear all filters

152085-Thumbnail Image.png
Description
Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for

Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for large–scale growth of modified Synechocystis include abiotic stress, microbial contamination and high processing costs of product and cell material. Research reported in this dissertation contributes to solutions to these challenges. First, abiotic stress was addressed by overexpression of the heat shock protein ClpB1. In contrast to the wild type, the ClpB1 overexpression mutant (Slr1641+) tolerated rapid temperature changes, but no difference was found between the strains when temperature shifts were slower. Combination of ClpB1 overexpression with DnaK2 overexpression (Slr1641+/Sll0170+) further increased thermotolerance. Next, we used a Synechocystis strain that carries an introduced isoprene synthase gene (IspS+) and that therefore produces isoprene. We attempted to increase isoprene yields by overexpression of key enzymes in the methyl erythritol phosphate (MEP) pathway that leads to synthesis of the isoprene precursor. Isoprene production was not increased greatly by MEP pathway induction, likely because of limitations in the affinity of the isoprene synthase for the substrate. Finally, two extraction principles, two–phase liquid extraction (e.g., with an organic and aqueous phase) and solid–liquid extraction (e.g., with a resin) were tested. Two–phase liquid extraction is suitable for separating isoprene but not fatty acids from the culture medium. Fatty acid removal required acidification or surfactant addition, which affected biocompatibility. Therefore, improvements of both the organism and product–harvesting methods can contribute to enhancing the potential of cyanobacteria as solar–powered biocatalysts for the production of petroleum substitutes.
ContributorsGonzalez Esquer, Cesar Raul (Author) / Vermaas, Willem (Thesis advisor) / Chandler, Douglas (Committee member) / Bingham, Scott (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2013
151469-Thumbnail Image.png
Description
The F1Fo ATP synthase is required for energy conversion in almost all living organisms. The F1 complex is a molecular motor that uses ATP hydrolysis to drive rotation of the γ–subunit. It has not been previously possible to resolve the speed and position of the γ–subunit of the F1–ATPase as

The F1Fo ATP synthase is required for energy conversion in almost all living organisms. The F1 complex is a molecular motor that uses ATP hydrolysis to drive rotation of the γ–subunit. It has not been previously possible to resolve the speed and position of the γ–subunit of the F1–ATPase as it rotates during a power stroke. The single molecule experiments presented here measured light scattered from 45X91 nm gold nanorods attached to the γ–subunit that provide an unprecedented 5 μs resolution of rotational position as a function of time. The product of velocity and drag, which were both measured directly, resulted in an average torque of 63±8 pN nm for the Escherichia coli F1-ATPase that was determined to be independent of the load. The rotational velocity had an initial (I) acceleration phase 15° from the end of the catalytic dwell, a slow (S) acceleration phase during ATP binding/ADP release (15°–60°), and a fast (F) acceleration phase (60°–90°) containing an interim deceleration (ID) phase (75°–82°). High ADP concentrations decreased the velocity of the S phase proportional to 'ADP-release' dwells, and the F phase proportional to the free energy derived from the [ADP][Pi]/[ATP] chemical equilibrium. The decreased affinity for ITP increased ITP-binding dwells by 10%, but decreased velocity by 40% during the S phase. This is the first direct evidence that nucleotide binding contributes to F1–ATPase torque. Mutations that affect specific phases of rotation were identified, some in regions of F1 previously considered not to contribute to rotation. Mutations βD372V and γK9I increased the F phase velocity, and γK9I increased the depth of the ID phase. The conversion between S and F phases was specifically affected by γQ269L. While βT273D, βD305E, and αR283Q decreased the velocity of all phases, decreases in velocity due to βD302T, γR268L and γT82A were confined to the I and S phases. The correlations between the structural locations of these mutations and the phases of rotation they affect provide new insight into the molecular basis for F1–ATPase γ-subunit rotation.
ContributorsMartin, James (Author) / Frasch, Wayne D (Thesis advisor) / Chandler, Douglas (Committee member) / Gaxiola, Roberto (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2012
150878-Thumbnail Image.png
Description
Teleosts have the most primitive adaptive immune system. However, in terms of functionality the teleost immune system is similar to birds and mammals. On the other hand, enteric bacterial pathogens of mammals and birds present conserved regulatory mechanisms that control virulence factors. In this context, deletion of conserved genes that

Teleosts have the most primitive adaptive immune system. However, in terms of functionality the teleost immune system is similar to birds and mammals. On the other hand, enteric bacterial pathogens of mammals and birds present conserved regulatory mechanisms that control virulence factors. In this context, deletion of conserved genes that control virulence factors have been successfully used as measure to construct live attenuated bacterial vaccines for mammals and birds. Here, I hypothesize that evolutionary conserved genes, which control virulence factors or are essential for bacterial physiology in Enterobacteriaceae, could be used as universal tools to design live attenuated recombinant bacterial vaccines from fish to mammals. The evolutionary conserved genes that control virulence factors, crp and fur, and the essential gene for the synthesis of the cell wall, asd, were studied in Edwardsiella ictaluri to develop a live recombinant vaccine for fish host. The genus Edwardsiella is one of the most ancient represent of the Enterobacteriaceae family. E. ictaluri, a host restricted pathogen of catfish (Ictalurus punctatus), is the causative agent of the enteric septicemia and one of the most important pathogens of this fish aquaculture. Although, crp and fur control different virulence factors in Edwardsiella, in comparison to other enterics, individual deletion of these genes triggered protective immune response at the systemic and mucosal level of the fish. Deletion of asdA gene allowed the creation of a balanced-lethal system to syntheses heterologous antigens. I concluded that crp, fur and asd could be universally used to develop live attenuate recombinant Enterobacteriaceae base vaccines for different hosts.
ContributorsSantander Morales, Javier Alonso (Author) / Curtiss, Roy Iii (Thesis advisor) / Chandler, Douglas (Committee member) / Chang, Yung (Committee member) / Shi, Yixin (Committee member) / Arizona State University (Publisher)
Created2012
Description
Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while

Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while other are nested between the myofibrils (i.e., intermyofibrillar (IMF) mitochondria). Functional and proteome differences specific to SS versus IMF mitochondria in obese individuals may contribute to reduced capacity for muscle ATP production seen in obesity. The overall goals of this work were to (1) isolate functional muscle SS and IMF mitochondria from lean and obese individuals, (2) assess enzyme activities associated with the electron transport chain and ATP production, (3) determine if elevated plasma amino acids enhance SS and IMF mitochondrial respiration and ATP production rates in SM of obese humans, and (4) determine differences in mitochondrial proteome regulating energy metabolism and key biological processes associated with SS and IMF mitochondria between lean and obese humans.

Polarography was used to determine functional differences in isolated SS and IMF mitochondria between lean (37 ± 3 yrs; n = 10) and obese (35 ± 3 yrs; n = 11) subjects during either saline (control) or amino acid (AA) infusions. AA infusion increased ADP-stimulated respiration (i.e., coupled respiration), non-ADP stimulated respiration (i.e., uncoupled respiration), and ATP production rates in SS, but not IMF mitochondria in lean (n = 10; P < 0.05). Neither infusion increased any of the above parameters in muscle SS or IMF mitochondria of the obese subjects.

Using label free quantitative mass spectrometry, we determined differences in proteomes of SM SS and IMF mitochondria between lean (33 ± 3 yrs; n = 16) and obese (32 ± 3 yrs; n = 17) subjects. Differentially-expressed mitochondrial proteins in SS versus IMF mitochondria of obese subjects were associated with biological processes that regulate: electron transport chain (P<0.0001), citric acid cycle (P<0.0001), oxidative phosphorylation (P<0.001), branched-chain amino acid degradation, (P<0.0001), and fatty acid degradation (P<0.001). Overall, these findings show that obesity is associated with redistribution of key biological processes within the mitochondrial reticulum responsible for regulating energy metabolism in human skeletal muscle.
ContributorsKras, Katon Anthony (Author) / Katsanos, Christos (Thesis advisor) / Chandler, Douglas (Committee member) / Dinu, Valentin (Committee member) / Mor, Tsafrir S. (Committee member) / Arizona State University (Publisher)
Created2017
133917-Thumbnail Image.png
Description
Health and fast food are seemingly on two opposite ends of the spectrum, yet healthy fast food is quickly growing in popularity. As many fast food brands are adjusting their menu to accommodate to this trend, this study explores how health claims used in fast food advertising affect college students'

Health and fast food are seemingly on two opposite ends of the spectrum, yet healthy fast food is quickly growing in popularity. As many fast food brands are adjusting their menu to accommodate to this trend, this study explores how health claims used in fast food advertising affect college students' perceptions of health and their likelihood to purchase healthy fast food products. To test this, a survey gathered quantitative data to assess student's perceptions of health and fast food, as well as qualitative data of when eating healthy is appealing and unappealing. An ad manipulation was employed to test student's likelihood to purchase the product shown in the ad. Though the study did not yield significant results, the results collected indicate that health claims may not be enough to influence someone to purchase, but that taste is of student's highest priority when making food purchase decisions. Thus, the study opens the door for future research in this realm of health and fast food, and concludes with recommendations for both marketers and future researchers.
ContributorsMigray, Emilee Catherine (Author) / Gray, Nancy (Thesis director) / Samper, Adriana (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134151-Thumbnail Image.png
Description
This paper will review past unethical studies conducted in the last 100 years on humans, including studies such as the WWII Concentration Camp studies on hypothermia and sterilization, Tuskegee Syphilis Study, and the case of Henrietta Lacks; Analyze why they were deemed unethical, the laws that emerged from these studies,

This paper will review past unethical studies conducted in the last 100 years on humans, including studies such as the WWII Concentration Camp studies on hypothermia and sterilization, Tuskegee Syphilis Study, and the case of Henrietta Lacks; Analyze why they were deemed unethical, the laws that emerged from these studies, and how it relates to contemporary technology, with a focus on the issues surrounding the development of an electronic wearable pregnancy monitor. The studies will include details of how they were conducted as well as what deemed them unethical and an explanation of why the results are unusable. Following the studies will be an explanation of the laws that were set into place following the studies with a lead into current technologies and how these technologies created a new set of ethics. The Google Mini, the wearable biosensor onesies for infants, and the intensive care unit at Banner Baywood will be described and so will their role in the development of an electronic wearable pregnancy monitor. The mini-meta analysis includes possible features of the monitor as well as a description of what the ethical consent form will look like. To conclude the paper, the importance of analyzing past unethical studies will help create a new ethical device that will make a point to go above and beyond to ensure the physical health of unborn children, in a way that is both ethical and significant.
ContributorsWallace, Sydney Sarah (Author) / Hall, Rick (Thesis director) / Kamenca, Andrea (Committee member) / Human Systems Engineering (Contributor) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134192-Thumbnail Image.png
Description
Forty collegiate gymnasts were recruited for a nutrition and health study. Participants must have been at least eighteen years old at Arizona State University (ASU) in the club or team gymnastics program. The Institutional Review Board (IRB) reviewed and accepted my survey in order to hand out to the gymnasts.

Forty collegiate gymnasts were recruited for a nutrition and health study. Participants must have been at least eighteen years old at Arizona State University (ASU) in the club or team gymnastics program. The Institutional Review Board (IRB) reviewed and accepted my survey in order to hand out to the gymnasts. The ASU club and team coach and the ASU study team also approved my survey. As soon as the survey was approved, it was emailed to all of the gymnasts. ASU gymnasts were surveyed on nutritional knowledge and personal health. Subjects answered a quiz on nutrient needs and serving sizes. Personal questions consisted of height, weight, injuries, body image, and typical meal plans. Gymnasts were given a $10 compensation to increase the participation. We found that only 16% of gymnasts surveyed scored a 70% or higher on their nutritional knowledge. Although these gymnasts do not have adequate knowledge, the majority consume a healthy diet. Diets included fruits, vegetables, protein-rich foods, and few high fat and sugary foods. Four of the gymnasts had one or fewer injuries in the past two years, although, four gymnasts also had three or more injuries. No correlation was found between diet and injuries. There was also no correlation between the gymnast's nutritional knowledge and their health.
ContributorsKugler, Natalie K. (Author) / Levinson, Simin (Thesis director) / Berger, Christopher (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135452-Thumbnail Image.png
Description
According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects.

According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects. Lifestyle and diet modifications can be just as effective as medications in helping to improve glycemic control, and prevent diabetes or improve the condition in those who have it. Studies have demonstrated that consuming vinegar with carbohydrates can positively impact postprandial glycemia in diabetic and healthy individuals. Continuous vinegar intake with meals may even reduce fasting blood glucose levels. Since vinegar is a primary ingredient in mustard, the purpose of this study was to determine if mustard consumption with a carbohydrate-rich meal (bagel and fruit juice) had an effect on the postprandial blood glucose levels of subjects. The results showed that mustard improved glycemia by 17% when subjects consumed the meal with mustard as opposed to the control. A wide variety of vinegars exists. The defining ingredient in all vinegars is acetic acid, behind the improvement in glycemic response observed with vinegar ingestion. Vinegar-containing foods range from mustard, to vinaigrette dressings, to pickled foods. The benefits of vinegar ingestion with carbohydrates are dose-dependent, meaning that adding even small amounts to meals can help. Making a conscious effort to incorporate these foods into meals, in addition to an overall healthy lifestyle, could provide an additional tool for diabetics and nondiabetics alike to consume carbohydrates in a healthier manner.
ContributorsJimenez, Gabriela (Author) / Johnston, Carol (Thesis director) / Lespron, Christy (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05