Matching Items (11)
Filtering by

Clear all filters

152536-Thumbnail Image.png
Description
As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to fully utilize both the robot and human capabilities. Moreover, often in cooperative tasks between two humans, one human will operate as the leader of the task and the other as the follower. These roles may switch during the task as needed. The need for communication extends into this area of leader-follower switching. Furthermore, not only is there a need to communicate the desire to switch roles but also to control this switching process. Impedance control has been used as a way of dealing with some of the complexities of pHRI. For this investigation, it was examined if impedance control can be utilized as a way of communicating a preferred direction between humans and robots. The first set of experiments tested to see if a human could detect a preferred direction of a robot by grasping and moving an object coupled to the robot. The second set tested the reverse case if the robot could detect the preferred direction of the human. The ability to detect the preferred direction was shown to be up to 99% effective. Using these results, a control method to allow a human and robot to switch leader and follower roles during a cooperative task was implemented and tested. This method proved successful 84% of the time. This control method was refined using adaptive control resulting in lower interaction forces and a success rate of 95%.
ContributorsWhitsell, Bryan (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2014
152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
153498-Thumbnail Image.png
Description
Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric interfaces have struggled to achieve both enhanced

functionality and long-term reliability. As demands in myoelectric interfaces trend

toward simultaneous and proportional control of compliant robots, robust processing

of multi-muscle coordinations, or synergies, plays a larger role in the success of the

control scheme. This dissertation presents a framework enhancing the utility of myoelectric

interfaces by exploiting motor skill learning and

exible muscle synergies for

reliable long-term simultaneous and proportional control of multifunctional compliant

robots. The interface is learned as a new motor skill specic to the controller,

providing long-term performance enhancements without requiring any retraining or

recalibration of the system. Moreover, the framework oers control of both motion

and stiness simultaneously for intuitive and compliant human-robot interaction. The

framework is validated through a series of experiments characterizing motor learning

properties and demonstrating control capabilities not seen previously in the literature.

The results validate the approach as a viable option to remove the trade-o

between functionality and reliability that have hindered state-of-the-art myoelectric

interfaces. Thus, this research contributes to the expansion and enhancement of myoelectric

controlled applications beyond commonly perceived anthropomorphic and

\intuitive control" constraints and into more advanced robotic systems designed for

everyday tasks.
ContributorsIson, Mark (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Greger, Bradley (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
155964-Thumbnail Image.png
Description
Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or experimental manipulations and often fail to detect differences between prosthesis

Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or experimental manipulations and often fail to detect differences between prosthesis users and non-amputee control subjects. This lack of sensitivity limits the ability of clinicians to make informed clinical decisions and presents challenges with insurance reimbursement for comprehensive clinical care and advanced prosthetic devices. These issues have directly impacted clinical care by restricting device options, increasing financial burden on clinics, and limiting support for research and development. This work aims to establish experimental methods and outcome measures that are more sensitive than traditional methods to balance and mobility changes in prosthesis users. Methods and analysis techniques were developed to probe aspects of balance and mobility control that may be specifically impacted by use of a prosthesis and present challenges similar to those experienced in daily life that could improve the detection of balance and mobility changes. Using the framework of cognitive resource allocation and dual-tasking, this work identified unique characteristics of prosthesis users’ postural control and developed sensitive measures of gait variability. The results also provide broader insight into dual-task analysis and the motor-cognitive response to demanding conditions. Specifically, this work identified altered motor behavior in prosthesis users and high cognitive demand of using a prosthesis. The residual standard deviation method was developed and demonstrated to be more effective than traditional gait variability measures at detecting the impact of dual-tasking. Additionally, spectral analysis of the center of pressure while standing identified altered somatosensory control in prosthesis users. These findings provide a new understanding of prosthetic use and new, highly sensitive techniques to assess balance and mobility in prosthesis users.
ContributorsHoward, Charla Lindley (Author) / Abbas, James (Thesis advisor) / Buneo, Christopher (Committee member) / Lynskey, Jim (Committee member) / Santello, Marco (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
Description
For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery

For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery size should be increased. Another way is to increase the efficiency of the propellers. Previous research shows that ducting a propeller can cause an increase of up to 94 % in the thrust produced by the rotor-duct system. This research focused on developing and testing a quadcopter having a centrally ducted rotor which produces 60 % of the total system thrust and 3 other peripheral rotors. This quadcopter will provide longer flight times while having the same maneuvering flexibility in planar movements.
ContributorsLal, Harsh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
156718-Thumbnail Image.png
Description
Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the

Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the gait dynamic stability.

A knee exoskeleton and ankle assistive device (Robotic Shoe) are developed and used to provide walking assistance. The knee exoskeleton provides personalized knee joint assistive torque during the stance phase. The robotic shoe is a light-weighted mechanism that can store the potential energy at heel strike and release it by using an active locking mechanism at the terminal stance phase to provide push-up ankle torque and assist the toe-off. Lower-limb Kinematic time series data are collected for subjects wearing these devices in the passive and active mode. The changes of kinematics with and without these devices on lower-limb motion are first studied. Orbital stability, as one of the commonly used measure to quantify gait stability through calculating Floquet Multipliers (FM), is employed to asses the effects of these wearable devices on gait stability. It is shown that wearing the passive knee exoskeleton causes less orbitally stable gait for users, while the knee joint active assistance improves the orbital stability compared to passive mode. The robotic shoe only affects the targeted joint (right ankle) kinematics, and wearing the passive mechanism significantly increases the ankle joint FM values, which indicates less walking orbital stability. More analysis is done on a mechanically perturbed walking public data set, to show that orbital stability can quantify the effects of external mechanical perturbation on gait dynamic stability. This method can further be used as a control design tool to ensure gait stability for users of lower-limb assistive devices.
ContributorsRezayat Sorkhabadi, Seyed Mostafa (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
134988-Thumbnail Image.png
Description
The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered

The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered exoskeletons have the potential to be used directly in physical therapy or indirectly in research pursuing more effective rehabilitation methods. This paper presents the LiTREAD, a lightweight three degree-of-freedom robotic exoskeletal ankle device. This novel robotic system is designed to be worn on a user's leg and actuate the foot position during treadmill studies. The robot's sagittal plane actuation is complemented by passive virtual axis systems in the frontal and transverse planes. Together, these degrees of freedom allow the device to approximate the full range of motion of the ankle. The virtual axis mechanisms feature locking configurations that will allow the effect of these degrees of freedom on gait dynamics to be studied. Based on a kinematic analysis of the robot's actuation and geometry, it is expected to meet and exceed its torque and speed targets, respectively. The device will fit either leg of a range of subject sizes, and is expected to weigh just 1.3 kg (2.9 lb.). These features and characteristics are designed to minimize the robot's interference with the natural walking motion. Pending validation studies confirming that all design criteria have been met, the LiTREAD prototype that has been constructed will be utilized in various experiments investigating properties of the ankle such as its mechanical impedance. It is hoped that the LiTREAD will yield valuable data that will expand our knowledge of the ankle and aid in the design of future lower-extremity devices.
ContributorsCook, Andrew James Henry (Author) / Lee, Hyunglae (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154718-Thumbnail Image.png
Description
Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies of ankle angle perturbation over wider ranges of grade orientations in static conditions; however, these studies do not account for effects during the gait cycle. Furthermore, contemporary studies on this topic neglect critical sources of unnatural stimulus in the design of investigative technology. It is hypothesized that the investigation of ankle angle perturbations in the frontal plane, particularly in the context of inter-leg coordination mechanisms, results in a more complete characterization of the effects of surface grade on human gait mechanisms. This greater understanding could potentially lead to significant applications in gait rehabilitation, especially for individuals who suffer from impairment as a result of stroke. A wearable pneumatic device was designed to impose inversion and eversion perturbations on the ankle through simulated surface grade changes. This prototype device was fabricated, characterized, and tested in order to assess its effectiveness. After testing and characterizing this device, it was used in a series of experiments on human subjects while data was gathered on muscular activation and gait kinematics. The results of the characterization show success in imposing inversion and eversion angle perturbations of approximately 9° with a response time of 0.5 s. Preliminary experiments focusing on inter-leg coordination with healthy human subjects show that one-sided inversion and eversion perturbations have virtually no effect on gait kinematics. However, changes in muscular activation from one-sided perturbations show statistical significance in key lower limb muscles. Thus, the prototype device demonstrates novelty in the context of human gait research for potential applications in rehabilitation.
ContributorsBarkan, Andrew (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2016
155722-Thumbnail Image.png
Description
A robotic swarm can be defined as a large group of inexpensive, interchangeable

robots with limited sensing and/or actuating capabilities that cooperate (explicitly

or implicitly) based on local communications and sensing in order to complete a

mission. Its inherent redundancy provides flexibility and robustness to failures and

environmental disturbances which guarantee the proper completion

A robotic swarm can be defined as a large group of inexpensive, interchangeable

robots with limited sensing and/or actuating capabilities that cooperate (explicitly

or implicitly) based on local communications and sensing in order to complete a

mission. Its inherent redundancy provides flexibility and robustness to failures and

environmental disturbances which guarantee the proper completion of the required

task. At the same time, human intuition and cognition can prove very useful in

extreme situations where a fast and reliable solution is needed. This idea led to the

creation of the field of Human-Swarm Interfaces (HSI) which attempts to incorporate

the human element into the control of robotic swarms for increased robustness and

reliability. The aim of the present work is to extend the current state-of-the-art in HSI

by applying ideas and principles from the field of Brain-Computer Interfaces (BCI),

which has proven to be very useful for people with motor disabilities. At first, a

preliminary investigation about the connection of brain activity and the observation

of swarm collective behaviors is conducted. After showing that such a connection

may exist, a hybrid BCI system is presented for the control of a swarm of quadrotors.

The system is based on the combination of motor imagery and the input from a game

controller, while its feasibility is proven through an extensive experimental process.

Finally, speech imagery is proposed as an alternative mental task for BCI applications.

This is done through a series of rigorous experiments and appropriate data analysis.

This work suggests that the integration of BCI principles in HSI applications can be

successful and it can potentially lead to systems that are more intuitive for the users

than the current state-of-the-art. At the same time, it motivates further research in

the area and sets the stepping stones for the potential development of the field of

Brain-Swarm Interfaces (BSI).
ContributorsKaravas, Georgios Konstantinos (Author) / Artemiadis, Panagiotis (Thesis advisor) / Berman, Spring M. (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2017