Matching Items (52)
Filtering by

Clear all filters

Description
The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.
ContributorsAfzalian Naini, Nima (Author) / Pizziconi, Vincent (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane

Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane (PDMS) substrate being used for the SMEA, and to derive a functional procedure for adhering hNPC’s to the PDMS. The proven method of sterilization was to plasma treat the sample and then soak it in 70% ethanol for one hour. The most successful method for cell adhesion was plasma treating the PDMS, followed by treating the surface of the PDMS with 0.01 mg/mL poly-l-lysine (PLL) and 3 µg/cm2 laminin. The development of these methods was an iterative process; as the methods were tested, any problems found with the method were corrected for the next round of testing until a final method was confirmed. Moving forward, the findings will allow for cell behavior to be researched in a unique fashion to better understand the response of adherent cells to physical stimulation by measuring changes in their electrical activity.
ContributorsBridgers, Carson (Co-author) / Peterson, Mara (Co-author) / Stabenfeldt, Sarah (Thesis director) / Graudejus, Oliver (Committee member) / Harrington Bioengineering Program (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135452-Thumbnail Image.png
Description
According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects.

According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects. Lifestyle and diet modifications can be just as effective as medications in helping to improve glycemic control, and prevent diabetes or improve the condition in those who have it. Studies have demonstrated that consuming vinegar with carbohydrates can positively impact postprandial glycemia in diabetic and healthy individuals. Continuous vinegar intake with meals may even reduce fasting blood glucose levels. Since vinegar is a primary ingredient in mustard, the purpose of this study was to determine if mustard consumption with a carbohydrate-rich meal (bagel and fruit juice) had an effect on the postprandial blood glucose levels of subjects. The results showed that mustard improved glycemia by 17% when subjects consumed the meal with mustard as opposed to the control. A wide variety of vinegars exists. The defining ingredient in all vinegars is acetic acid, behind the improvement in glycemic response observed with vinegar ingestion. Vinegar-containing foods range from mustard, to vinaigrette dressings, to pickled foods. The benefits of vinegar ingestion with carbohydrates are dose-dependent, meaning that adding even small amounts to meals can help. Making a conscious effort to incorporate these foods into meals, in addition to an overall healthy lifestyle, could provide an additional tool for diabetics and nondiabetics alike to consume carbohydrates in a healthier manner.
ContributorsJimenez, Gabriela (Author) / Johnston, Carol (Thesis director) / Lespron, Christy (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136631-Thumbnail Image.png
Description
Because children do not have the same decision-making powers as adults in matters affecting their health, their opinions have often been underrepresented in research (Bradding & Horstman, 1999). However, there is growing interest in the way that children view health because this knowledge elicits the development of more child-centered and

Because children do not have the same decision-making powers as adults in matters affecting their health, their opinions have often been underrepresented in research (Bradding & Horstman, 1999). However, there is growing interest in the way that children view health because this knowledge elicits the development of more child-centered and effective approaches to health education and intervention (Bradding & Horstman, 1999). Professionals have often utilized the write-and-draw technique in school settings to gain a better understanding of how to best implement health education programs. The "bottom-up" approach of the write-and-draw method encourages participation and has been shown to elicit thoughtful responses about how children conceptualize health (Pridmore & Bendelow, 1995). This study uses the write-and-draw method to perform a cross- cultural comparison of child perspectives of health in the United States and Guatemala, countries that represent contrasting paradigms for child health. The results of this study are consistent with previous research, especially the emergent health themes. Children from the United States and Guatemala predominantly depicted health in terms of food. Guatemalan students were more likely to refer to hygienic practices and environmental conditions, while US children mentioned vegetables, water, and exercise as being healthy. For the unhealthy category, themes of poor hygiene, chips, fat/grease, fruit, carbohydrates, and environment were mentioned more often in Guatemala, while U.S. students listed sweets and fast food more frequently. Results support claims made in other literature that children's concepts of health are shaped by life experience and social context. Potential applications of the research include exposing areas (themes) where children are less likely to understand health implications and developing educational curriculum to increase a more comprehensive understanding of health.
ContributorsRenslow, Jillian Marie (Author) / Maupin, Jonathan (Thesis director) / BurnSilver, Shauna (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136361-Thumbnail Image.png
Description
Determining the characteristics of an object during a grasping task requires a combination of mechanoreceptors in the muscles and fingertips. The width of a person's finger aperture during the grasp may affect the accuracy of how that person determines hardness, as well. These experiments aim to investigate how an individual

Determining the characteristics of an object during a grasping task requires a combination of mechanoreceptors in the muscles and fingertips. The width of a person's finger aperture during the grasp may affect the accuracy of how that person determines hardness, as well. These experiments aim to investigate how an individual perceives hardness amongst a gradient of varying hardness levels. The trend in the responses is assumed to follow a general psychometric function. This will provide information about subjects' abilities to differentiate between two largely different objects, and their tendencies towards guess-chances upon the presentation of two similar objects. After obtaining this data, it is then important to additionally test varying finger apertures in an object-grasping task. This will allow an insight into the effect of aperture on the obtained psychometric function, thus ultimately providing information about tactile and haptic feedback for further application in neuroprosthetic devices. Three separate experiments were performed in order to test the effect of finger aperture on object hardness differentiation. The first experiment tested a one-finger pressing motion among a hardness gradient of ballistic gelatin cubes. Subjects were asked to compare the hardness of one cube to another, which produced the S-curve that accurately portrayed the psychometric function. The second experiment utilized the Phantom haptic device in a similar setup, using the precision grip grasping motion, instead. This showed a more linear curve; the percentage reported harder increased as the hardness of the second presented cube increased, which was attributed to both the experimental setup limitations and the scale of the general hardness gradient. The third experiment then progressed to test the effect of three finger apertures in the same experimental setup. By providing three separate testing scenarios in the precision grip task, the experiment demonstrated that the level of finger aperture has no significant effect on an individual's ability to perceive hardness.
ContributorsMaestas, Gabrielle Elise (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
132475-Thumbnail Image.png
Description
The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is

The global population over the age of 60 is estimated to rise to 23% by 2050 only increase the prevalence of functional neurological disorders and stroke. Increase in cases of functional neurological disorders and strokes will place a greater burden on the healthcare industry, specifically physical therapy. Physical therapy is vital for a patient’s recovery of motor function which is time demanding and taxing on the physical therapist. Wearable robotics have been proven to improve functional outcomes in gait rehabilitation by providing controlled high dosage and high-intensity training. Accurate control strategies for assistive robotic exoskeletons are vital for repetitive high precisions assistance for cerebral plasticity to occur.

This thesis presents a preliminary determination and design of a control algorithm for an assistive ankle device developed by the ASU RISE Laboratory. The assistive ankle device functions by compressing a spring upon heel strike during gait, remaining compressed during mid-stance and then releasing upon initiation of heel-off. The relationship between surface electromyography and ground reactions forces were used for identification of user-initiated heel-off. The muscle activation of the tibialis anterior combined with the ground reaction forces of the heel pressure sensor generated potential features that will be utilized in the revised control algorithm for the assistive ankle device. Work on this project must proceed in order to test and validate the revised control algorithm to determine its accuracy and precision.
ContributorsGaytan-Jenkins, Daniel Rinaldo (Author) / Zhang, Wenlong (Thesis director) / Tyler, Jamie (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133847-Thumbnail Image.png
Description
With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are modified to accommodate a specific need. For instance, polymers used in drug delivery are more efficient if they are biodegradable. This ensures that the delivery system does not remain in the body after releasing the drug. It is therefore crucial that the polymer used in the drug system possess biodegradable properties. Such modification can be done in different ways including the use of peptides to make copolymers that will degrade in the presence of enzymes. In this work, we studied the effect of a polypeptide GAPGLL on the polymer NIPAAm and compare with the previously studied Poly(NIPAAm-co-GAPGLF). Both copolymers Poly(NIPAAm-co-GAPGLL) were first synthesized from Poly(NIPAAm-co-NASI) through nucleophilic substitution by the two peptides. The synthesis of these copolymers was confirmed by 1H NMR spectra and through cloud point measurement, the corresponding LCST was determined. Both copolymers were degraded by collagenase enzyme at 25 ° C and their 1H NMR spectra confirmed this process. Both copolymers were cleaved by collagenase, leading to an increase in solubility which yielded a higher LCST compared to before enzyme degradation. Future studies will focus on evaluating other peptides and also using other techniques such as Differential Scanning Microcalorimetry (DSC) to better observe the LCST behavior. Moreover, enzyme kinetics studies is also crucial to evaluate how fast the enzyme degrades each of the copolymers.
ContributorsUwiringiyimana, Mahoro Marie Chantal (Author) / Vernon, Brent (Thesis director) / Nikkhah, Mehdi (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137461-Thumbnail Image.png
Description
A great deal of research has been done on communication barriers between patient and doctor, but due to the complexity of the relationship, little successful solutions have been suggested to bridge interdisciplinary communication between the two persons. This project explores a solution to aid both patient and doctor as they

A great deal of research has been done on communication barriers between patient and doctor, but due to the complexity of the relationship, little successful solutions have been suggested to bridge interdisciplinary communication between the two persons. This project explores a solution to aid both patient and doctor as they seek to communicate with each other regarding the patient's prognosis and treatment with a medical device. By creating a website, the information found therein can be accessed in the doctor's office by using a smartphone or tablet so that both patient and doctor can use it as a resource before, during, and after a doctor's visit. The website, Medical Devices 4 U (MD4U), gives background information on a large selection of medical devices, allows primary sources to share their information with potential consumers of the medical device, permits users to ask questions and comment on other user's comments, and gives a list of questions that a patient can ask a healthcare professional during a doctor's visit. In this report, the nature of doctor and patient communication is exposed and the steps taken to alleviate the communication barriers by way of creating a website are explained.
ContributorsHalls, Sarah Koy (Author) / Spano, Mark (Thesis director) / Garcia, Antonio (Committee member) / Brandon, Tedd (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137469-Thumbnail Image.png
Description
Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation

Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation or pO2 in patients to determine a personalized treatment method. This project focuses on creating and characterizing nanoemulsions using a pO2 reporter molecule hexamethyldisiloxane (HMDSO) and its longer chain variants as well as assessing their cytotoxicity. We also explored creating multi-modal (MRI/Fluorescence) nanoemulsions.
ContributorsGrucky, Marian Louise (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05