Matching Items (259)
Filtering by

Clear all filters

148034-Thumbnail Image.png
Description

In the past decade, the use of mobile applications, specifically mobile applications focused on improving the health and fitness of users, has increased exponentially. As more consumers look towards mobile health applications to improve their health through dieting, exercise, and weight management, it is important to analyze how the concept

In the past decade, the use of mobile applications, specifically mobile applications focused on improving the health and fitness of users, has increased exponentially. As more consumers look towards mobile health applications to improve their health through dieting, exercise, and weight management, it is important to analyze how the concept of gamification can encourage sustained interaction and approval of these health-focused applications. This thesis aims to understand the prevalence of gamification amongst a large sample of health and fitness applications, identify and code the gamification features used in these apps, and finally, understand how different gamification features relate to the popularity and willingness to advocate using eWOM on behalf of a mobile app.

ContributorsBaugh, Monica (Author) / Dong, Xiaodan (Thesis director) / Montoya, Detra (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147978-Thumbnail Image.png
Description

This research analyzes lesbian, gay, bisexual, transgender, and queer/ questioning (LGBTQ) students’ experiences with sex education in Arizona. This research is a grey literature review of Arizona’s previous state policies, current state sex education curricula law, and legislative proposals within the past few years. Analysis focuses on changes after the

This research analyzes lesbian, gay, bisexual, transgender, and queer/ questioning (LGBTQ) students’ experiences with sex education in Arizona. This research is a grey literature review of Arizona’s previous state policies, current state sex education curricula law, and legislative proposals within the past few years. Analysis focuses on changes after the repeal of the “no promo homo” law in 2019. Through defining the differences between abstinence only and comprehensive sex education (CSE), this will provide a framework to better understand approaches to sex education. As of now, Arizona stresses abstinence-based education. Delving into LGBTQ students’ general experiences in schools provides a foundation to better understand why these students especially benefit from CSE. Since LGBTQ students are disproportionately affected by bullying and are at increased sexual health risks, it is important to address misperceptions surrounding the LGBTQ community. The purpose of this research is to push for more LGBTQ inclusive sex education curricula in Arizona.

ContributorsHo, Jacklyn (Author) / Glegziabher, Meskerem (Thesis director) / Ruth, Alissa (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Public Affairs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147808-Thumbnail Image.png
Description

The Green Gamers is a start-up concept revolving around incentivizing healthy eating in Arizonan adolescents through the use of reward-based participation campaigns (popularized by conglomerates like Mondelez and Coca-Cola)

ContributorsDavis, Benjamin (Co-author) / Wong, Brendan (Co-author) / Hwan, Kim (Thesis director) / McKearney, John (Committee member) / Department of Finance (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137870-Thumbnail Image.png
Description
Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part

Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part of the plant is it? How does it relate to others in the plant kingdom? How do other cultures use this plant? The most many of us know about them is that they are at the supermarket when we need them for dinner (Nabhan, 2009) (Vileisis, 2008).
ContributorsBarron, Kara (Author) / Landrum, Leslie (Thesis director) / Swanson, Tod (Committee member) / Pigg, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137871-Thumbnail Image.png
DescriptionBased on previous research and findings it is proven that a non-profit class to create awareness will be beneficial in the prevention of eating disorders. This analysis will provide significant research to defend the proposed class.
ContributorsAllen, Brittany (Author) / Chung, Deborah (Author) / Fey, Richard (Thesis director) / Peck, Sidnee (Committee member) / Mazurkiewicz, Milena (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
148322-Thumbnail Image.png
Description

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling and immunological defenses. Furthermore, there is evidence that machine learning and peptide microarrays can be used to make reliable predictions of where proteins could interact with each other without the definitive knowledge of the interactions. In this case, a neural network was used to predict the unknown binding interactions of TNFR2 onto LT-ɑ and TRAF2, and PD-L1 onto CD80, based off of the binding data from a sampling of protein-peptide interactions on a microarray. The accuracy and reliability of these predictions would rely on future research to confirm the interactions of these proteins, but the knowledge from these methods and predictions could have a future impact with regards to rational and structure-based drug design.

ContributorsPoweleit, Andrew Michael (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Chiu, Po-Lin (Committee member) / School of Molecular Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148324-Thumbnail Image.png
Description

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects mood<br/>state in healthy young adults. This was a randomized, single blinded controlled trial consisting of<br/>25 subjects. Participants were randomly assigned to either the vinegar group (consumed 2<br/>tablespoons of liquid vinegar diluted in one cup water twice daily with meals) or the control<br/>group (consumed one vinegar pill daily with a meal), and the intervention lasted 4 weeks.<br/>Subjects completed mood questionnaires pre- and post-intervention. Results showed a significant<br/>improvement in CES-D and POMS-Depression scores for the vinegar group compared to the<br/>control. This study suggests that vinegar ingestion may improve depressive symptoms in healthy<br/>young adults.

ContributorsWilliams, Susanna (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05