Matching Items (4)
Filtering by

Clear all filters

153812-Thumbnail Image.png
Description
Objectives

This cross-sectional study sought to assess the eating and physical activity behaviors among in-state and out-of-state college freshmen attending Arizona State University and to determine if social connectedness mediated the relationship between residency status and eating and physical activity behaviors.

Methods

College freshmen from two dormitories were recruited for participation from Arizona

Objectives

This cross-sectional study sought to assess the eating and physical activity behaviors among in-state and out-of-state college freshmen attending Arizona State University and to determine if social connectedness mediated the relationship between residency status and eating and physical activity behaviors.

Methods

College freshmen from two dormitories were recruited for participation from Arizona State University’s Tempe campus. A 128-item survey assessing demographics, college life, eating and physical activity behaviors, and social connectedness was administered. In addition, participants completed up to three days of dietary recall. Multivariate linear regression models, adjusting for age, gender, race, ethnicity, highest parental education, dormitory, Pell grant status, number of dietary recalls, and availability of a weekend day of dietary recall were used to assess the relationships between residency status, social connectedness, and eating and physical activity behaviors.

Results

No associations were observed between residency status and calories, grams and percentage of calories from fat, and added sugar. There was a statistically significant association between residency status and moderate-to-vigorous physical activity (MVPA). In-state students reported 21 minutes less per day of MVPA than out-of-state students did (β=-20.85; 95% CI=-30.68, -11.02; p<0.001). There was no relationship between residency status and social connectedness. Social connectedness and eating and physical activity behaviors were not associated. Social connectedness did not mediate the relationship between residency status and eating and physical activity behaviors.

Conclusions

In-state and out-of-state students differed in their MVPA; however, this relationship was not mediated by social connectedness. Further studies are needed to confirm the relationship between MVPA and residency status. In addition, more studies are needed to assess the relationship between social connectedness and MVPA.
ContributorsNelson, Stephanie A. (Stephanie Anne), 1958- (Author) / Bruening, Meg (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Whisner, Corrie (Committee member) / Arizona State University (Publisher)
Created2016
134371-Thumbnail Image.png
Description

Sleep is imperative for health and wellness with direct impacts on brain function, physiology, emotional well-being, performance and safety when compromised. Adolescents and young adults are increasingly affected by factors affecting the maintenance of regular sleep schedules. College and university students are a potentially vulnerable population to sleep deprivation and

Sleep is imperative for health and wellness with direct impacts on brain function, physiology, emotional well-being, performance and safety when compromised. Adolescents and young adults are increasingly affected by factors affecting the maintenance of regular sleep schedules. College and university students are a potentially vulnerable population to sleep deprivation and sleep insufficiency. Possible factors that could contribute to poor sleep hygiene include, but are not limited to, academic pressures, social activities, and increased screen time. Arguably, students are still experiencing bone mineralization, until the age of 30 or even 40 years old, which makes it more important to understand the effects that altered sleep patterns could have on continued development of bone health. It is our understanding that to date, studies assessing the risk of sleep insufficiency on bone mineral density in college students have not been conducted. We hypothesized that college-aged students, between the ages of 18-25 years, with shorter sleep durations, greater sleep schedule variability, and poorer sleep environments will have significantly lower bone mineral density. ActiGraph monitoring, via a wrist ActiWatch was used to quantitatively measure sleep habits for up to 7 consecutive days. During the week-long study participants also captured their self-reported sleep data through the use of a sleep diary. Participants were measured one time within the study for bone mineral density of the lumbar spine and total hip through a dual energy x-ray absorptiometry. This was a preliminary analysis of a larger cross-sectional analysis looked at 17 participants, of which there were 14 females and 3 males, (n=5, 1 and 11 Hispanic, Black and White, respectively). The mean age of participants was 20.8±1.7 y with an average BMI of 22.9±3.2 kg/m2. ActiWatch measurement data showed a mean daily sleep duration of participants to be 437.5 ± 43.1 (372.5 – 509.4) minutes. Mean sleep efficiency (minutes of sleep divided by minutes of time in bed) and mean number of awakenings were 87.4±4.3 (75.4-93.4) minutes and 32.1±6.4 (22.3-42.7) awakenings, respectively. The median time for wake after sleep onset (WASO) was 34.5±10.5 (18.3-67.4) minutes. The mean bone mineral density (BMD) for the hips was 1.06±0.14 (0.81-1.28) g/cm2 with a mean BMD of the lumbar spine being 1.24±0.12 (0.92-1.43) g/cm2. Age-matched Z-scores of the hips was 0.31±0.96 (-1.6-2.1) and lumbar spine was 0.53 (IQR: 0.13, 0.98; -2.25-1.55). Neither sleep duration nor sleep efficiency was significantly correlated to BMD of either locations. While WASO was positively associated with hip and spine BMD, this value was not statistically significant in this population. Overall, associations between sleep and BMD of the femur and spine were not seen in this cohort. Further work utilizing a larger cohort will allow for control of covariates while looking for potential associations between bone health, sleep duration and efficiency.

ContributorsEsch, Patricia Rose (Author) / Whisner, Corrie (Thesis director) / Petrov, Megan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154341-Thumbnail Image.png
Description
College weight gain and obesity are significant problems impacting our society, leading to a considerable number of comorbidities during and after college. Gut microbiota are increasingly recognized for their role in obesity and weight gain. Currently, research exploring the gut microbiome and its associations with dietary intake and

College weight gain and obesity are significant problems impacting our society, leading to a considerable number of comorbidities during and after college. Gut microbiota are increasingly recognized for their role in obesity and weight gain. Currently, research exploring the gut microbiome and its associations with dietary intake and body mass index (BMI) is limited among this population. Therefore, the purpose of this study was to assess associations between the gut microbiome, BMI, and dietary intake in a population of healthy college students living in two dorms at Arizona State University (n=90). Cross-sectional analyses were undertaken including 24-hour dietary recalls and anthropometrics (height, weight and BMI). High throughput Bacterial 16S rRNA gene sequencing of fecal samples was performed to quantify the gut microbiome and analyses were performed at phyla and family levels. Within this population, the mean BMI was 24.4 ± 5.3 kg/m2 and mean caloric intake was 1684 ± 947 kcals/day. Bacterial community analysis revealed that there were four predominant phyla and 12 predominant families accounting for 99.3% and 97.1% of overall microbial communities, respectively. Results of this study suggested that a significant association occurred between one principal component (impacted most by 22 microbial genera primarily within Firmicutes) and BMI (R2=0.053, p=0.0301). No significant correlations or group differences were observed when assessing the Firmicutes/Bacteroidetes ratio in relation to BMI or habitual dietary intake. These results provide a basis for gut microbiome research in college populations. Although, findings suggest that groups of microbial genera may be most influential in obesity, further longitudinal research is necessary to more accurately describe these associations over me. Findings from future research may be used to develop interventions to shift the gut microbiome to help moderate or prevent excess weight gain during this important life stage.
ContributorsHotz, Ricci-Lee (Author) / Whisner, Corrie (Thesis advisor) / Bruening, Meredith (Committee member) / Vega-Lopez, Sonia (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2016
166419-Thumbnail Image.png
Description

Obesity increases the risk for colorectal cancer. In mice, a pro-obesity high-fat-diet (HFD) leads to an intestinal phenotype characterized by enhanced proliferation, numbers, function and tumor-initiating capacity of stem cells, the cell-of-origin for many intestinal cancers. This phenotype is driven by a lipid metabolism program facilitated by an intrinsic Peroxisome

Obesity increases the risk for colorectal cancer. In mice, a pro-obesity high-fat-diet (HFD) leads to an intestinal phenotype characterized by enhanced proliferation, numbers, function and tumor-initiating capacity of stem cells, the cell-of-origin for many intestinal cancers. This phenotype is driven by a lipid metabolism program facilitated by an intrinsic Peroxisome Proliferator-Activated Receptor/Fatty Acid Oxidation (PPAR/FAO) axis that senses and utilizes cellular lipids. However, the microbiome is a known regulator of lipid metabolism in the gut, but little is understood about how the gut commensals affect access to the lipids and alter stem cell function. Here, we use the long term HFD-fed mouse model to analyze the phenotypic changes in the intestinal stem cells (ISCs) after depletion of the gut microbiota. We find that the loss of the gut microbiome after four weeks of antibiotic treatment imposes significant changes in ISC function leading to reduced HFD ISC regenerative potential. These results indicate that the gut microbiome plays a crucial role in the lipid metabolic process which regulates and maintains the HFD ISC phenotype, and further suggests that the gut microbiome may augment the diet-induced tumor initiating capacity by altering the stem cell function.

ContributorsSantos Molina, Pablo (Author) / Mana, Miyeko (Thesis director) / Whisner, Corrie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05