Matching Items (2)
Filtering by

Clear all filters

Description

College student mental health has been a prominent issue in the US. However, solutions to address this issue are oftentimes not free or convenient for students. This project seeks to aid in improving student mental health by identifying and addressing the most commonly faced stress factors that contribute to poor

College student mental health has been a prominent issue in the US. However, solutions to address this issue are oftentimes not free or convenient for students. This project seeks to aid in improving student mental health by identifying and addressing the most commonly faced stress factors that contribute to poor mental health. These stress factors will be addressed via a free iOS application made available on the Apple App Store. A free iOS application that addresses commonly faced stress factors will provide students with a free and easily accessible resource to aid in their mental health journey.

ContributorsSuman, Faith (Author) / Sandy, Douglas (Thesis director) / Bansal, Srividya (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Software Engineering (Contributor)
Created2023-05
158465-Thumbnail Image.png
Description
Riding a bicycle requires accurately performing several tasks, such as balancing and navigation, which may be difficult or even impossible for persons with disabilities. These difficulties may be partly alleviated by providing active balance and steering assistance to the rider. In order to provide this assistance while maintaining free maneuverability,

Riding a bicycle requires accurately performing several tasks, such as balancing and navigation, which may be difficult or even impossible for persons with disabilities. These difficulties may be partly alleviated by providing active balance and steering assistance to the rider. In order to provide this assistance while maintaining free maneuverability, it is necessary to measure the position of the rider on the bicycle and to understand the rider's intent. Applying autonomy to bicycles also has the potential to address some of the challenges posed by traditional automobiles, including CO2 emissions, land use for roads and parking, pedestrian safety, high ownership cost, and difficulty traversing narrow or partially obstructed paths.

The Smart Bike research platform provides a set of sensors and actuators designed to aid in understanding human-bicycle interaction and to provide active balance control to the bicycle. The platform consists of two specially outfitted bicycles, one with force and inertial measurement sensors and the other with robotic steering and a control moment gyroscope, along with the associated software for collecting useful data and running controlled experiments. Each bicycle operates as a self-contained embedded system, which can be used for untethered field testing or can be linked to a remote user interface for real-time monitoring and configuration. Testing with both systems reveals promising capability for applications in human-bicycle interaction and robotics research.
ContributorsBush, Jonathan Ernest (Author) / Zhang, Wenlong (Thesis advisor) / Heinrichs, Robert (Thesis advisor) / Sandy, Douglas (Committee member) / Arizona State University (Publisher)
Created2020