Matching Items (6)
Filtering by

Clear all filters

155948-Thumbnail Image.png
Description
CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently at the forefront of strategies that enhance immune based treatment of a variety of tumors. Effective T-cell based vaccines and immunotherapies fundamentally rely on the interaction of CTLs with peptide-human leukocyte antigen class I (HLA-I) complexes

CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently at the forefront of strategies that enhance immune based treatment of a variety of tumors. Effective T-cell based vaccines and immunotherapies fundamentally rely on the interaction of CTLs with peptide-human leukocyte antigen class I (HLA-I) complexes on the infected/malignant cell surface. However, how CTLs are able to respond to antigenic peptides with high specificity is largely unknown. Also unknown, are the different mechanisms underlying tumor immune evasion from CTL-mediated cytotoxicity. In this dissertation, I investigate the immunogenicity and dysfunction of CTLs for the development of novel T-cell therapies. Project 1 explores the biochemical hallmarks associated with HLA-I binding peptides that result in a CTL-immune response. The results reveal amino acid hydrophobicity of T-cell receptor (TCR) contact residues within immunogenic CTL-epitopes as a critical parameter for CTL-self
onself discrimination. Project 2 develops a bioinformatic and experimental methodology for the identification of CTL-epitopes from low frequency T-cells against tumor antigens and chronic viruses. This methodology is employed in Project 3 to identify novel immunogenic CTL-epitopes from human papillomavirus (HPV)-associated head and neck cancer patients. In Project 3, I further study the mechanisms of HPV-specific T-cell dysfunction, and I demonstrate that combination inhibition of Indoleamine 2, 3-dioxygenase (IDO-1) and programmed cell death protein (PD-1) can be a potential immunotherapy against HPV+ head and neck cancers. Lastly, in Project 4, I develop a single-cell assay for high-throughput identification of antigens targeted by CTLs from whole pathogenome libraries. Thus, this dissertation contributes to fundamental T-cell immunobiology by identifying rules of T-cell immunogenicity and dysfunction, as well as to translational immunology by identifying novel CTL-epitopes, and therapeutic targets for T-cell immunotherapy.
ContributorsKrishna, Sri (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Jacobs, Bertram L (Committee member) / Lake, Douglas F (Committee member) / Arizona State University (Publisher)
Created2017
157007-Thumbnail Image.png
Description
Biomarkers find a wide variety of applications in oncology from risk assessment to diagnosis and predicting and monitoring recurrence and response to therapy. Developing clinically useful biomarkers for cancer is faced with several challenges, including cancer heterogeneity and factors related to assay development and biomarker performance. Circulating biomarkers offer a

Biomarkers find a wide variety of applications in oncology from risk assessment to diagnosis and predicting and monitoring recurrence and response to therapy. Developing clinically useful biomarkers for cancer is faced with several challenges, including cancer heterogeneity and factors related to assay development and biomarker performance. Circulating biomarkers offer a rapid, cost-effective, and minimally-invasive window to disease and are ideal for population-based screening. Circulating immune biomarkers are stable, measurable, and can betray the underlying antigen when present below detection levels or even no longer present. This dissertation aims to investigate potential circulating immune biomarkers with applications in cancer detection and novel therapies. Over 600,000 cancers each year are attributed to the human papillomavirus (HPV), including cervical, anogenital and oropharyngeal cancers. A key challenge in understanding HPV immunobiology and developing immune biomarkers is the diversity of HPV types and the need for multiplexed display of HPV antigens. In Project 1, nucleic acid programmable protein arrays displaying the proteomes of 12 HPV types were developed and used for serum immunoprofiling of women with cervical lesions or invasive cervical cancer. These arrays provide a valuable high-throughput tool for measuring the breadth, specificity, heterogeneity, and cross-reactivity of the serologic response to HPV. Project 2 investigates potential biomarkers of immunity to the bacterial CRISPR/Cas9 system that is currently in clinical trials for cancer. Pre-existing B cell and T cell immune responses to Cas9 were detected in humans and Cas9 was modified to eliminate immunodominant epitopes while preserving its function and specificity. This dissertation broadens our understanding of the immunobiology of cervical cancer and provides insights into the immune profiles that could serve as biomarkers of various applications in cancer.
ContributorsEwaisha, Radwa Mohamed Emadeldin Mahmoud (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Lake, Douglas F (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2018
135193-Thumbnail Image.png
Description
This purpose of this thesis study was to examine variables of the "War on Cancer" frame, loss-gain prime, and patient gender on treatment decision for advanced cancer patients. A total of 291 participants (141 females) participated in an online survey experiment and were randomly assigned to one of eight possible

This purpose of this thesis study was to examine variables of the "War on Cancer" frame, loss-gain prime, and patient gender on treatment decision for advanced cancer patients. A total of 291 participants (141 females) participated in an online survey experiment and were randomly assigned to one of eight possible conditions, each of which were comprised of a combination of one of two levels for three total independent variables: war frame ("War on Cancer" frame or neutral frame), loss-gain prime (loss prime or gain prime), and patient gender (female or male). Each of the three variables were operationalized to determine whether or not the exposure to the war on cancer paradigm, loss-frame language, or male patient gender would increase the likelihood of a participant choosing a more aggressive cancer treatment. Participants read a patient scenario and were asked to respond to questions related to motivating factors. Participants were then asked to report preference for one of two treatment decisions. Participants were then asked to provide brief demographic information in addition to responding to questions about military history, war attitudes, and cancer history. The aforementioned manipulations sought to determine whether exposure to various factors would make a substantive difference in final treatment decision. Contrary to the predicted results, participants in the war frame condition (M = 3.85, SD = 1.48) were more likely to choose the pursuit of palliative care (as opposed to aggressive treatment) than participants in the neutral frame condition (M = 3.54, SD = 1.23). Ultimately, these significant findings suggest that there is practical information to be gained from treatment presentation manipulations. By arming healthcare providers with a more pointed understanding of the nuances of treatment presentation, we can hope to empower patients, their loved ones, and healthcare providers entrenched in the world of cancer treatment.
ContributorsKnowles, Madelyn Ann (Author) / Kwan, Virginia S. Y. (Thesis director) / Presson, Clark (Committee member) / Salamone, Damien (Committee member) / Department of Psychology (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137624-Thumbnail Image.png
Description
This paper focuses on the current use of complementary medicine in Oncology. First, it reviews the general trends in the rise of complementary therapies in the United States and look at the organizations responsible for the advancement of research. Next reviewed is the specific use of complementary medicine in cancer

This paper focuses on the current use of complementary medicine in Oncology. First, it reviews the general trends in the rise of complementary therapies in the United States and look at the organizations responsible for the advancement of research. Next reviewed is the specific use of complementary medicine in cancer prevention, during treatment, and post-treatment therapy for increased quality of life. There are many modalities used in the management of this disease including yoga, tai chi chuan, botanicals, probiotics and meditation practices. Each of these therapies has their own unique benefits and are used at different stages of disease prevention and treatment.
ContributorsBalcerzak, Erin Mary (Author) / Larkey, Linda (Thesis director) / Hosley, Brenda (Committee member) / Bucho-Gonzalez, Julie (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-05
189343-Thumbnail Image.png
Description
The innate immune system serves as an immediate response to pathogenic infection and an informant to the adaptive immune system. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)–RNase-L system is a component of the innate immune system induced by interferons (IFNs) and serves to eliminate viral infections. In humans, three enzymatically active OAS

The innate immune system serves as an immediate response to pathogenic infection and an informant to the adaptive immune system. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)–RNase-L system is a component of the innate immune system induced by interferons (IFNs) and serves to eliminate viral infections. In humans, three enzymatically active OAS proteins exist, OAS1, OAS2, and OAS3. Recent evidence suggests variations in cellular localization of OAS proteins may influence the impact and influence of those proteins on viral replication. However, viral suppression mechanisms involving specific OAS proteins are still unclear for most viruses. Here, I overexpress different isoforms of OAS and determined that though viruses within the same family have similar replication strategies, the extent to which each OAS protein impacts viral replication for Flaviviruses, and Alphaviruses varies. In contrast to the innate immune system, the adaptive immune system provides specific and long-lived immune responses. In the context of cancer, T cells have been shown to play a prominent role in tumor regression. It has previously been demonstrated that administration α-CTLA-4/α-PD-L1 immune checkpoint blockade (ICB) to mice inoculated with a K7M2 metastatic osteosarcoma (mOS) cell line resulted in ~50% survival. Here, I sought to determine biological differences among murine responders and non-responders to ICB for mOS to understand better what factors could increase ICB efficacy. A prospective culprit is a variance in circulating antibodies (Abs). I have shown that sera from mice, before inoculation with mOS or ICB, display distinct differences in Ab repertoire between responders and non-responders, suggesting the presence or absence of particular Abs may influence the outcome of ICB. Recent studies have also shown that malleable environmental factors, such as differences in microbiome composition, can yield subsequent changes in circulating Abs. Strong associations have been made between host-microbiome interactions and their effects on health. Here, I study potential associations of microbiome-mediated impacts on ICB efficacy for mOS. Additionally, I sought to determine potential changes in T-cellular response to mOS due to modulations in microbiome composition and showed that ICB efficacy can change in conjunction with microbiome composition changes in a murine model.
ContributorsDi Palma, Michelle Pina (Author) / Blattman, Joseph N (Thesis advisor) / Li, Yize (Thesis advisor) / Anderson, Karen S (Committee member) / McFadden, Grant (Committee member) / Arizona State University (Publisher)
Created2023
187591-Thumbnail Image.png
Description
Resistance to existing anti-cancer drugs poses a key challenge in the field of medical oncology, in that it results in the tumor not responding to treatment using the same medications to which it responded previously, leading to treatment failure. Adaptive therapy utilizes evolutionary principles of competitive suppression, leveraging competition between

Resistance to existing anti-cancer drugs poses a key challenge in the field of medical oncology, in that it results in the tumor not responding to treatment using the same medications to which it responded previously, leading to treatment failure. Adaptive therapy utilizes evolutionary principles of competitive suppression, leveraging competition between drug resistant and drug sensitive cells, to keep the population of drug resistant cells under control, thereby extending time to progression (TTP), relative to standard treatment using maximum tolerated dose (MTD). Development of adaptive therapy protocols is challenging, as it involves many parameters, and the number of parameters increase exponentially for each additional drug. Furthermore, the drugs could have a cytotoxic (killing cells directly), or a cytostatic (inhibiting cell division) mechanism of action, which could affect treatment outcome in important ways. I have implemented hybrid agent-based computational models to investigate adaptive therapy, using either a single drug (cytotoxic or cytostatic), or two drugs (cytotoxic or cytostatic), simulating three different adaptive therapy protocols for treatment using a single drug (dose modulation, intermittent, dose-skipping), and seven different treatment protocols for treatment using two drugs: three dose modulation (DM) protocols (DM Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on Progression), and four fixed-dose (FD) protocols (FD Cocktail Intermittent, FD Ping-Pong Intermittent, FD Cocktail Dose-Skipping, FD Ping-Pong Dose-Skipping). The results indicate a Goldilocks level of drug exposure to be optimum, with both too little and too much drug having adverse effects. Adaptive therapy works best under conditions of strong cellular competition, such as high fitness costs, high replacement rates, or high turnover. Clonal competition is an important determinant of treatment outcome, and as such treatment using two drugs leads to more favorable outcome than treatment using a single drug. Switching drugs every treatment cycle (ping-pong) protocols work particularly well, as well as cocktail dose modulation, particularly when it is feasible to have a highly sensitive measurement of tumor burden. In general, overtreating seems to have adverse survival outcome, and triggering a treatment vacation, or stopping treatment sooner when the tumor is shrinking seems to work well.
ContributorsSaha, Kaushik (Author) / Maley, Carlo C (Thesis advisor) / Forrest, Stephanie (Committee member) / Anderson, Karen S (Committee member) / Cisneros, Luis H (Committee member) / Arizona State University (Publisher)
Created2023