Matching Items (6)
Filtering by

Clear all filters

156726-Thumbnail Image.png
Description
Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of

Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of a closed-loop cycle (CLC) and proposes a solution that, in theory, can eliminate the environmental impacts caused by construction and demolition (C&D) waste and increase the efficiency of resources’ use. In a CLC, building materials are reused, remanufactured, recycled, and reintegrated into other buildings (or into other sectors) without creating any waste.

Designing out waste is the core principle of the CE. Design for disassembly or design for deconstruction (DfD) is the practice of planning the future deconstruction of a building and the reuse of its materials. Concepts like DfD, CE, and product-service systems (PSS) can work together to promote CLC in the built environment. PSS are business models based on stewardship instead of ownership. CE combines DfD, PSS, materials’ durability, and materials’ reuse in multiple life cycles to promote a low-carbon, regenerative economy. CE prioritizes reuse over recycling. Dealing with resource scarcity demands us to think beyond the incremental changes from recycling waste; it demands an urgent, systemic, and radical change in the way we design, build, and procure construction materials.

This dissertation aims to answer three research questions: 1) How can researchers estimate the environmental benefits of reusing building components, 2) What variables are susceptible to affect the environmental impact assessment of reuse, and 3) What are the barriers and opportunities for DfD and materials’ reuse in the current design practice in the United States.

The first part of this study investigated how different life cycle assessment (LCA) methods (i.e., hybrid LCA and process-based LCA), assumptions (e.g., reuse rates, transportation distances, number of reuses), and LCA timelines can affect the results of a closed-loop LCA. The second part of this study built on interviews with architects in the United States to understand why DfD is not part of the current design practice in the country.
ContributorsCruz Rios, Fernanda (Author) / Grau, David (Committee member) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2018
155422-Thumbnail Image.png
Description
The performance of the Alpha Sprayed Polyurethane Foam (SPF) roofing system is perceived as not an economical option when compared to a 20-year modified bitumen roofing system. Today, the majority of roofs are being replaced, rather than newly installed. The coating manufacturer, Neogard, implemented the Alpha roofing program to identify

The performance of the Alpha Sprayed Polyurethane Foam (SPF) roofing system is perceived as not an economical option when compared to a 20-year modified bitumen roofing system. Today, the majority of roofs are being replaced, rather than newly installed. The coating manufacturer, Neogard, implemented the Alpha roofing program to identify the best contractors in the industry and to measure their roof performance. The Alpha roof system has shown consistent high performance on over 230 million square feet of surveyed roof. The author proposes to identify if the Alpha roof system is renewable, has proven performance that competes with the traditional modified roofing system, and is a more economical option by evaluating an Alpha roof system installation and the performance of a 29-year-old Alpha roof system. The Dallas Independent School District utilized the Alpha program for William Lipscomb Elementary School in 2016. Dallas Fort Worth Urethane installed the Alpha SPF roof system with high customer satisfaction ratings. This roofing installation showed the value of the Alpha roof system by saving over 20% on costs for the installation and will save approximately 69% of costs on the recoating of the roof in 20 years. The Casa View Elementary School roof system was installed with a Neogard Permathane roof system in 1987. This roof was hail tested with ten drops from 17 feet 9 inches of 1-3/4-inch steel ball (9 out of 10 passed) and four drops from 17 feet 9 inches with a 3-inch diameter steel ball (2 out of 4 passed). The analysis of the passing and failing core samples show that the thickness of the top and base Alpha SPF coating is one of the major differences in a roof passing or failing the FM-SH hail test. Over the 40-year service life, the main difference of purchasing a 61,000 square feet Alpha SPF roof versus modified bitumen roof are savings of approximately $1,067,500. Past hail tests on Alpha SPF roof systems show its cost effectiveness with high customer satisfaction (9.8 out of 10), an over 40-year service life after a $6.00/SF recoat and savings of over $1M for DISD.
ContributorsZulanas, Charles J., IV (Author) / Kashiwagi, Dean T. (Thesis advisor) / Kashiwagi, Jacob S (Thesis advisor) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2017
155683-Thumbnail Image.png
Description
The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems

The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems could reach up to 18.9% of their total capacity, emerging technologies and models are driving for greater efficiency to assure the reliability of a product under its actual application. The objectives of this dissertation consist of (1) reviewing the state of the art and practice of prognostics and health management for the Direct Current (DC) side of photovoltaic systems; (2) assessing the corrosion of the driven posts supporting PV structures in utility scale plants; and (3) assessing the probabilistic risk associated with the failure of polymeric materials that are used in tracker and fixed tilt systems.

As photovoltaic systems age under relatively harsh and changing environmental conditions, several potential fault conditions can develop during the operational lifetime including corrosion of supporting structures and failures of polymeric materials. The ability to accurately predict the remaining useful life of photovoltaic systems is critical for plants ‘continuous operation. This research contributes to the body of knowledge of PV systems reliability by: (1) developing a meta-model of the expected service life of mounting structures; (2) creating decision frameworks and tools to support practitioners in mitigating risks; (3) and supporting material selection for fielded and future photovoltaic systems. The newly developed frameworks were validated by a global solar company.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2017
156056-Thumbnail Image.png
Description
Construction industry performance (schedule, budget, and customer satisfaction) has not improved over the last 20 years. This investigation proposes that academic/industry research using actual project data may have more impact on improving industry performance than traditional survey-based research. The authors utilize the CIB and CIB W117 platforms to proliferate the

Construction industry performance (schedule, budget, and customer satisfaction) has not improved over the last 20 years. This investigation proposes that academic/industry research using actual project data may have more impact on improving industry performance than traditional survey-based research. The authors utilize the CIB and CIB W117 platforms to proliferate the concept of academic/industry test results to increase the impact on the construction industry. The authors propose to use the existing journal and then share the journal papers on an online platform (ResearchGate.net) ensuring a faster proliferation of the key academic/industry test results into the academic research community. The mechanism of the academic/industry test results will have more of an impact on industry practices than the traditional publication systems, which concentrate on literature reviews and surveys to collect industry opinions and analyze the information to change industry practices. The proliferation of industry research results will create transparency in the construction industry and the academic research community.
ContributorsGastelum, David (Author) / Kashiwagi, Dean T. (Thesis advisor) / Chong, Oswald (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2017
168450-Thumbnail Image.png
Description
As the construction industry in Saudi Arabia was on its way to thriving again. Their growth was due to the unprecedented volume of planned projects such as large-scale and unique projects. Suddenly, the world was faced with one of the most disrupting events in the last century which had a

As the construction industry in Saudi Arabia was on its way to thriving again. Their growth was due to the unprecedented volume of planned projects such as large-scale and unique projects. Suddenly, the world was faced with one of the most disrupting events in the last century which had a devastating impact on the construction industry specifically. This paper explores mainly the impact of the COVID-19 pandemic on construction projects in Saudi Arabia. Particularly, this paper explores how the pandemic and its related events contributed to the projects' schedule disturbances. This is because most of the projects rely on manpower and supply chains which were heavily disrupted due to the protective measures. For that, a study was conducted to evaluate the impact on the construction projects in Saudi Arabia, to what extent the schedule projects were affected, and what were the main reasons for the schedule delays. The research relied on a field survey and schedule analysis for 12 projects which resulted in identifying several causes of delays and the delayed durations that the projects in Saudi Arabia were facing. This research allows those in construction fields to identify the main causes of delays in order to avoid or minimize the impact of these issues on future projects.
ContributorsObeid, Muhammad Hasan Hani (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2021
187379-Thumbnail Image.png
Description
The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity,

The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity, and to achieve sustainable development, it is vital to transform conventional construction into a more sustainable model. The research investigated sustainable construction perceptions in Kuwait, a rapidly growing country with a high volume of construction activities. Kuwait has ambitious plans to transition into a more sustainable economic development model, and the construction industry needs to align with these plans. This research aims to identify the characteristics of sustainable construction applications in the Kuwaiti construction market, such as awareness, current perceptions, drivers and barriers, and the construction regulations' impact. The research utilized a qualitative approach to answer research questions and deliver research objectives by conducting eleven Semi-structured interviews with experienced professionals in the Kuwaiti construction market to collect rich data that reflects insights and understandings of the Kuwaiti construction industry. The Thematic analysis of the data resulted in six themes and one sub-theme that presented reflections, insights, and perspectives on sustainable construction perceptions in the Kuwaiti construction market. The research findings reflected poor sustainable construction awareness and poor environmental and social application in the construction industry, the determinant role of construction regulations in promoting sustainable construction. and barriers and drivers to sustainable construction applications. The research concluded with answers to research questions, delivery of research objectives, and an explanation of sustainable construction perceptions in the Kuwaiti construction market.
Contributorsalsalem, mohammad salem (Author) / Duran, Melanie (Thesis advisor) / Chong, Oswald (Committee member) / Sullivan, Kenneth (Committee member) / Grau, David (Committee member) / Arizona State University (Publisher)
Created2023