Matching Items (11)
Filtering by

Clear all filters

150213-Thumbnail Image.png
Description
Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively

Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively studied for nanoscale optoelectronic applications. A systematic and comprehensive optical and microstructural study of several important infrared semiconductor NWs is presented in this thesis, which includes InAs, PbS, InGaAs, erbium chloride silicate and erbium silicate. Micro-photoluminescence (PL) and transmission electron microscope (TEM) were utilized in conjunction to characterize the optical and microstructure of these wires. The focus of this thesis is on optical study of semiconductor NWs in the mid-infrared wavelengths. First, differently structured InAs NWs grown using various methods were characterized and compared. Three main PL peaks which are below, near and above InAs bandgap, respectively, were observed. The octadecylthiol self-assembled monolayer was employed to passivate the surface of InAs NWs to eliminate or reduce the effects of the surface states. The band-edge emission from wurtzite-structured NWs was completely recovered after passivatoin. The passivated NWs showed very good stability in air and under heat. In the second part, mid-infrared optical study was conducted on PbS wires of subwavelength diameter and lasing was demonstrated under optical pumping. The PbS wires were grown on Si substrate using chemical vapor deposition and have a rock-salt cubic structure. Single-mode lasing at the wavelength of ~3000-4000 nm was obtained from single as-grown PbS wire up to the temperature of 115 K. PL characterization was also utilized to demonstrate the highest crystallinity of the vertical arrays of InP and InGaAs/InP composition-graded heterostructure NWs made by a top-down fabrication method. TEM-related measurements were performed to study the crystal structures and elemental compositions of the Er-compound core-shell NWs. The core-shell NWs consist of an orthorhombic-structured erbium chloride silicate shell and a cubic-structured silicon core. These NWs provide unique Si-compatible materials with emission at 1530 nm for optical communications and solid state lasers.
ContributorsSun, Minghua (Author) / Ning, Cun-Zheng (Thesis advisor) / Yu, Hongbin (Committee member) / Carpenter, Ray W. (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2011
151310-Thumbnail Image.png
Description
Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to

Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to increased operating frequency and process variation, the probability of MIS occurrence and setup / hold failure within a clock cycle is high. The delay variation due to temporal proximity of MIS is significant for multiple input gates in the standard cell library. The shortest paths are affected by MIS due to the lack of averaging effect. Thus, sensitive designs such as that of SRAM row and column decoder circuits have high probability for MIS impact. The traditional static timing analysis (STA) assumes single input switching (SIS) scenario which is not adequate enough to capture gate delay accurately, as the delay variation due to temporal proximity of the MIS is ~15%-45%. Whereas, considering all possible scenarios of MIS for characterization is computationally intensive with huge data volume. Various modeling techniques are developed for the characterization of MIS effect. Some techniques require coefficient extraction through multiple spice simulation, and do not discuss speed up approach or apply models with complicated algorithms to account for MIS effect. The STA flow accounts for process variation through uncertainty parameter to improve product yield. Some of the MIS delay variability models account for MIS variation through table look up approach, resulting in huge data volume or do not consider propagation of RAT in the design flow. Thus, there is a need for a methodology to model MIS effect with less computational resource, and integration of such effect into design flow without trading off the accuracy. A finite-point based analytical model for MIS effect is proposed for multiple input logic gates and similar approach is extended for setup/hold characterization of sequential elements. Integration of MIS variation into design flow is explored. The proposed methodology is validated using benchmark circuits at 45nm technology node under process variation. Experimental results show significant reduction in runtime and data volume with ~10% error compared to that of SPICE simulation.
ContributorsSubramaniam, Anupama R (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Roveda, Janet (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150588-Thumbnail Image.png
Description
This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.5×10-4 λ03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process.
ContributorsLi, Debin (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Balanis, Constantine A (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
151238-Thumbnail Image.png
Description
Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning

Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning the entire energy spectrum from far-IR (~0 eV) up to UV (~3.4 eV). The broad range of bandgaps and material properties make it very attractive for a wide range of applications in optoelectronics, such as solar cells, laser diodes, light emitting diodes, and photodetectors. Moreover, this novel materials system potentially offers unlimited degrees of freedom for integration of electronic and optoelectronic devices onto a single substrate while keeping the best possible materials quality with very low densities of misfit dislocations. This capability is not achievable with any other known lattice-matched semiconductors on any available substrate. In the 6.1-A materials system, the semiconductors ZnTe and GaSb are almost perfectly lattice-matched with a lattice mismatch of only 0.13%. Correspondingly, it is expected that high quality ZnTe/GaSb and GaSb/ZnTe heterostructures can be achieved with very few dislocations generated during growth. To fulfill the task, their MBE growth and material properties are carefully investigated. High quality ZnTe layers grown on various III-V substrates and GaSb grown on ZnTe are successfully achieved using MBE. It is also noticed that ZnTe and GaSb have a type-I band-edge alignment with large band offsets (delta_Ec=0.934 eV, delta_Ev=0.6 eV), which provides strong confinement for both electrons and holes. Furthermore, a large difference in refractive index is found between ZnTe and GaSb (2.7 and 3.9, respectively, at 0.7 eV), leading to excellent optical confinement of the guided optical modes in planar semiconductor lasers or distributed Bragg reflectors (DBR) for vertical-cavity surface-emitting lasers. Therefore, GaSb/ZnTe double-heterostructure and ZnTe/GaSb DBR structure are suitable for use in light emitting devices. In this thesis work, experimental demonstration of these structures with excellent structural and optical properties is reported. During the exploration on the properties of various ZnTe heterostructures, it is found that residual tensile strains exist in the thick ZnTe epilayers when they are grown on GaAs, InP, InAs and GaSb substrates. The presence of tensile strains is due to the difference in thermal expansion coefficients between the epilayers and the substrates. The defect densities in these ZnTe layers become lower as the ZnTe layer thickness increases. Growth of high quality GaSb on ZnTe can be achieved using a temperature ramp during growth. The influence of temperature ramps with different ramping rates in the optical properties of GaSb layer is studied, and the samples grown with a temperature ramp from 360 to 470 C at a rate of 33 C/min show the narrowest bound exciton emission peak with a full width at half maximum of 15 meV. ZnTe/GaSb DBR structures show excellent reflectivity properties in the mid-infrared range. A peak reflectance of 99% with a wide stopband of 480 nm centered at 2.5 um is measured from a ZnTe/GaSb DBR sample of only 7 quarter-wavelength pairs.
ContributorsFan, Jin (Author) / Zhang, Yong-Hang (Thesis advisor) / Smith, David (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2012
168295-Thumbnail Image.png
Description
A general review of film growth with various mechanisms is given. Additives and their potential effects on film properties are also discussed. Experimental light-induced aluminum (Al) plating tool design is discussed. Light-induced electroplating of Al as the front electrode on the n-type emitter of silicon (Si) solar cells is proposed

A general review of film growth with various mechanisms is given. Additives and their potential effects on film properties are also discussed. Experimental light-induced aluminum (Al) plating tool design is discussed. Light-induced electroplating of Al as the front electrode on the n-type emitter of silicon (Si) solar cells is proposed as a substitute for screen-printed Silver (Ag). The advantages and disadvantages of Al over copper (Cu) as a suitable Ag replacement are examined. Optimization of the power given to a green laser for silicon nitride (SiNx) anitreflection coating patterning is performed. Laser damage and contamination removal conditions on post-patterned cell surfaces are identified. Plating and post-annealing temperature effects on Al morphology and film resistivity are explored. Morphology and resistivity improvement of the Al film are also investigated through several plating additives. The lowest resistivity of 3.1 µΩ-cm is given by nicotinic acid. Laser induced damage to the cell emitter experimentally limits the contact resistivity between light-induced Al and Si to approximately 69 mΩ-cm2. Phosphorus pentachloride (PCl5) is introduced into the plating bath and improved the the contact resistivity between light induced Al and Si to a range of 0.1-1 mΩ-cm2. Secondary ion mass spectroscopy (SIMS) was performed on a film deposited with PCl5 and showed a phosphorus peak, indicating emitter phosphorus concentration may be the reason for the low contact resistivity between light-induced Al and Si. SEM also shows that PCl5 improves Al film density and plating throwing power. Post plating annealing performed at a temperature of 500°C allows Al to spike through the thin n-type emitter causing cell failure. Atmospheric moisture causes poor process reproducibility.
ContributorsRicci, Lewis (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Kozicki, Michael (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2021
157530-Thumbnail Image.png
Description
The study of soft magnetic materials has been growing in popularity in recent years. Driving this interest are new applications for traditional electrical power-management components, such as inductors and transformers, which must be scaled down to the micro and nano scale while the frequencies of operation have been scaling u

The study of soft magnetic materials has been growing in popularity in recent years. Driving this interest are new applications for traditional electrical power-management components, such as inductors and transformers, which must be scaled down to the micro and nano scale while the frequencies of operation have been scaling up to the gigahertz range and beyond. The exceptional magnetic properties of the materials make them highly effective in these small-component applications, but the ability of these materials to provide highly-effective shielding has not been so thoroughly considered. Most shielding is done with traditional metals, such as aluminum, because of the relatively low cost of the material and high workability in shaping the material to meet size and dimensional requirements.

This research project focuses on analyzing the variance in shielding effectiveness and electromagnetic field effects of a thin film of Cobalt Zirconium Tantalum Boron (CZTB) in the band of frequencies most likely to require innovative solutions to long-standing problems of noise and interference. The measurements include Near H-Field attenuation and field effects, Far Field shielding, and Backscatter. Minor variances in the thickness and layering of sputter deposition can have significant changes electromagnetic signature of devices which radiate energy through the material.

The material properties presented in this research are H-Field attenuation, H-Field Flux Orientation, Far-Field Approximation, E Field Vector Directivity, H Field Vector Directivity, and Backscatter Magnitude. The results are presented, analyzed and explained using characterization techniques. Future work includes the effect of sputter deposition orientation, application to devices, and applicability in mitigating specific noise signals beyond the 5G band.
ContributorsMiller, Phillip Carl (Author) / Yu, Hongbin (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Blain Christen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2019
154556-Thumbnail Image.png
Description
To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two

To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two major bottlenecks. The first is the high electricity input to produce

crystalline-Si solar cells and modules, and the second is the limited supply of silver

(Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching

terawatt-scale deployment, which means the electricity produced by crystalline-Si

solar cells would never fulfill a noticeable portion of our energy demands in the future.

In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al)

electroplating has been developed as an alternative metallization technique in the

fabrication of crystalline-Si solar cells. The plating is carried out in a

near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been

found that dense, adherent Al deposits with resistivity in the high 10^–6 ohm-cm range

can be reproducibly obtained directly on Si substrates and nickel seed layers. An

all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al

back electrode, has been successfully demonstrated based on commercial p-type

monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further

optimization of the cell fabrication process, in particular a suitable patterning

technique for the front silicon nitride layer, is expected to increase the efficiency of

the cell to ~18%. This shows the potential of Al electroplating in cell metallization is

promising and replacing Ag with Al as the front finger electrode is feasible.
ContributorsSun, Wen-Cheng (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155877-Thumbnail Image.png
Description
Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe

Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe nanowires (NWs) that are synthesized

through a simple vapor-liquid-solid (VLS) method. By controlling the presence or

the absence of Au catalysts and controlling the growth parameters such as growth

temperature, various growth morphologies of ZnTe, such as thin films and nanowires

can be obtained. The characterization of the ZnTe nanostructures and films was

performed using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy

(EDX), high- resolution transmission electron microscope (HRTEM), X-ray

diffraction (XRD), photoluminescence (PL), Raman spectroscopy and light scattering

measurement. After confirming the crystal purity of ZnTe, two-terminal diodes and

three-terminal transistors were fabricated with both nanowire and planar nano-sheet

configurations, in order to correlate the nanostructure geometry to device performance

including field effect mobility, Schottky barrier characteristics, and turn-on

characteristics. Additionally, optoelectronic properties such as photoconductive gain

and responsivity were compared against morphology. Finally, ZnTe was explored in

conjunction with ZnO in order to form type-II band alignment in a core-shell nanostructure.

Various characterization techniques including scanning electron microscopy,

energy-dispersive X-ray spectroscopy , x-ray diffraction, Raman spectroscopy, UV-vis

reflectance spectra and photoluminescence were used to investigate the modification

of ZnO/ZnTe core/shell structure properties. In PL spectra, the eliminated PL intensity

of ZnO wires is primarily attributed to the efficient charge transfer process

occurring between ZnO and ZnTe, due to the band alignment in the core/shell structure. Moreover, the result of UV-vis reflectance spectra corresponds to the band

gap energy of ZnO and ZnTe, respectively, which confirm that the sample consists of

ZnO/ZnTe core/shell structure of good quality.
ContributorsPeng, Jhih-hong (Author) / Yu, Hongbin (Thesis advisor) / Roedel, Ronald (Committee member) / Goryll, Michael (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
156440-Thumbnail Image.png
Description
The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV,

The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV, appealing for various optoelectronic applications such as photodetectors, solar cells, Light Emitting Diodes (LEDs), lasers, etc., given the existing rich knowledge in device fabrication based on these materials.

This dissertation explores the growth of InGaAsP alloys using a low-cost method that could be potentially important especially for III-V NW-based solar cells. The NWs were grown by Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms using a Low-Pressure Chemical Vapor Deposition (LPCVD) technique. The concept of supersaturation was employed to control the morphology of NWs through the interplay between VLS and VS growth mechanisms. Comprehensive optical and material characterizations were carried out to evaluate the quality of the grown materials.

The growth of exceptionally high quality III-V phosphide NWs of InP and GaP was studied with an emphasis on the effects of vastly different sublimation rates of the associated III and V elements. The incorporation of defects exerted by deviation from stoichiometry was examined for GaP NWs, with an aim towards maximization of bandedge-to-defect emission ratio. In addition, a VLS-VS assisted growth of highly stoichiometric InP thin films and nano-networks with a wide temperature window from 560◦C to 720◦C was demonstrated. Such growth is shown to be insensitive to the type of substrates such as silicon, InP, and fused quartz. The dual gradient method was exploited to grow composition-graded ternary alloy NWs of InGaP, InGaAs, and GaAsP with different bandgaps ranging from 0.6 eV to 2.2 eV, to be used for making laterally-arrayed multiple bandgap (LAMB) solar cells. Furthermore, a template-based growth of the NWs was attempted based on the Si/SiO2 substrate. Such platform can be used to grow a wide range of alloy nanopillar materials, without being limited by typical lattice mismatch, providing a low cost universal platform for future PV solar cells.
ContributorsHashemi Amiri, Seyed Ebrahim (Author) / Ning, Cun-Zheng (Thesis advisor) / Petuskey, William (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2018
158870-Thumbnail Image.png
Description
This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2

This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2 typically undergoes a dramatic shift in optical properties at T = 341 K, which can be reduced through a variety of techniques to a temperature more suitable for thermal control applications. A VO2-based Fabry-Perot variable emitter is designed, fabricated, characterized, and experimentally demonstrated. The designed emitter has high emissivity when the radiating surface temperature is above 345 K and low emissivity when the temperature is less than 341 K. A uniaxial transfer matrix method and Bruggeman effective medium theory are both introduced to model the anisotropic properties of the VO2 to facilitate the design of multilayer VO2-based devices. A new furnace oxidation process is developed for fabricating high quality VO2 and the resulting thin films undergo comprehensive material and optical characterizations. The corresponding measurement platform is developed to measure the temperature-dependent transmittance and reflectance of the fabricated Fabry-Perot samples. The variable heat rejection of the fabricated samples is demonstrated via bell jar and cryothermal vacuum calorimetry measurements. Thermal modeling of a spacecraft equipped with variable emittance radiators is also conducted to elucidate the requirements and the impact for thermochromic variable emittance technology.
The potential of VO2 to be used as an optical force modulating device is also investigated for spacecraft micropropulsion. The preliminary design considers a Fabry-Perot cavity with an anti-reflection coating which switches between an absorptive “off” state (for insulating VO2) and a reflective “on” state (for metallic VO2), thereby modulating the incident solar radiation pressure. The visible and near-infrared optical properties of the fabricated vanadium dioxide are examined to determine if there is a sufficient optical property shift in those regimes for a tunable device.
ContributorsTaylor, Sydney June (Author) / Wang, Liping (Thesis advisor) / Wells, Valana (Committee member) / Yu, Hongbin (Committee member) / Wang, Robert (Committee member) / Thangavelautham, Jekanthan (Committee member) / Massina, Christopher J (Committee member) / Arizona State University (Publisher)
Created2020