Matching Items (20)
Filtering by

Clear all filters

152331-Thumbnail Image.png
Description
Digital to analog converters (DACs) find widespread use in communications equipment. Most commercially available DAC's which are intended to be used in transmitter applications come in a dual configuration for carrying the in phase (I) and quadrature (Q) data and feature on chip digital mixing. Digital mixing offers many benefits

Digital to analog converters (DACs) find widespread use in communications equipment. Most commercially available DAC's which are intended to be used in transmitter applications come in a dual configuration for carrying the in phase (I) and quadrature (Q) data and feature on chip digital mixing. Digital mixing offers many benefits concerning I and Q matching but has one major drawback; the update rate of the DAC must be higher than the intermediate frequency (IF) which is most commonly a factor of 4. This drawback motivates the need for interpolation so that a low update rate can be used for components preceding the DACs. In this thesis the design of an interpolating DAC integrated circuit (IC) to be used in a transmitter application for generating a 100MHz IF is presented. Many of the transistor level implementations are provided. The tradeoffs in the design are analyzed and various options are discussed. This thesis provides a basic foundation for designing an IC of this nature and will give the reader insight into potential areas of further research. At the time of this writing the chip is in fabrication therefore this document does not contain test results.
ContributorsNixon, Cliff (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2013
153100-Thumbnail Image.png
Description
Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing

Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing part. As such, the layup design of the material largely influences the structural performance. Optimization techniques such as the Genetic Algorithm (GA), Differential Evolution (DE), the Method of Feasible Directions (MFD), and others can be used to determine the optimal laminate composite material layup. In this thesis, sizing, shape and topology design optimization of laminated composites is carried out. Sizing optimization, such as the layer thickness, topology optimization, such as the layer orientation and material and the number of layers present, and shape optimization of the overall composite part contribute to the design optimization process of laminates. An optimization host program written in C++ has been developed to implement the optimization methodology of both population based and numerical gradient based methods. The performance of the composite structural system is evaluated through explicit finite element analysis of shell elements carried out using LS-DYNA. Results from numerical examples demonstrate that optimization design processes can significantly improve composite part performance through implementation of optimum material layup and part shape.
ContributorsMika, Krista (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014
153036-Thumbnail Image.png
Description
High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited.

In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling the current sources, however, errors due to random mismatch between current sources will arise and additional calibration hardware is necessary to ensure 12-bit linearity. This work presents how to implement a self-calibration DAC that works to fix amplitude errors while maintaining a lower overall area. Additionally, the DAC designed in this thesis investigates the implementation feasibility of a data-interleaved architecture. Data interleaving can increase the total bandwidth of the DACs by 2 with an increase in SQNR by an additional 3 dB.

The final results show that the calibration method can effectively improve the linearity of the DAC. The DAC is able to run up to 400 MSPS frequencies with a 75 dB SFDR performance and above 87 dB SFDR performance at update rates of 200 MSPS.
ContributorsJankunas, Benjamin (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2014
153025-Thumbnail Image.png
Description
The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement(OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and

The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement(OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and the effect of the parameters on the formed products. The aim of this research was to explore the structural changes and reaction product analysis of geopolymers (Slag & Fly Ash) using Fourier transform infrared spectroscopy (FTIR) and deconvolution

techniques. Spectroscopic techniques give valuable information at a molecular level but not all methods are economic and simple. To understand the mechanisms of alkali activated aluminosilicate materials, attenuated total reflectance (ATR) FTIR has been used where the effect of the parameters on the reaction products have been analyzed. To analyze complex systems like geopolymers using FTIR, deconvolution techniques help to obtain the properties of a particular peak attributed to a certain molecular vibration.

Time and temperature dependent analysis were done on slag pastes to understand the polymerization of reactive silica in the system with time and temperature variance. For time dependent analysis slag has been activated with sodium and potassium silicates using two different `n'values and three different silica modulus [Ms- (SiO2 /M2O)] values. The temperature dependent analysis was done by curing the samples at 60C and 80C. Similarly fly ash has been studied by activating with alkali hydroxides and alkali silicates. Under the same curing conditions the fly ash samples were evaluated to analyze the effects of added silicates for alkali activation.

The peak shifts in the FTIR explains the changes in the structural nature of the matrix and can be identified using the deconvolution technique. A strong correlation is found between the concentrations of silicate monomer in the activating position of the main Si-O-T (where T is Al/Si) stretching band in the FTIR spectrum, which

gives an indication of the relative changes in the Si/Al ratio. Also, the effect of the cation and silicate concentration in the activating solution has been discussed using the Fourier self deconvolution technique.
ContributorsMadavarapu, Sateesh Babu (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
150241-Thumbnail Image.png
Description
ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices

ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices tend to increase with higher integration levels. As the integration levels increase and the devices get faster, the need for high-calibre low cost test equipment become highly dominant. However testing the overall system becomes harder and more expensive. Traditionally, the transceiver system is tested in two steps utilizing high-calibre RF instrumentation and mixed-signal testers, with separate measurement setups for transmitter and receiver paths. Impairments in the RF front-end, such as the I/Q gain and phase imbalance and nonlinearity, severely affect the performance of the device. The transceiver needs to be characterized in terms of these impairments in order to guarantee good performance and specification requirements. The motivation factor for this thesis is to come up with a low cost and computationally simple extraction technique of these impairments. In the proposed extraction technique, the mapping between transmitter input signals and receiver output signals are used to extract the impairment and nonlinearity parameters. This is done with the help of detailed mathematical modeling of the transceiver. While the overall behavior is nonlinear, both linear and nonlinear models to be used under different test setups are developed. A two step extraction technique has been proposed in this work. The extraction of system parameters is performed by using the mathematical model developed along with a genetic algorithm implemented in MATLAB. The technique yields good extraction results with reasonable error. It uses simple mathematical operation which makes the extraction fast and computationally simple when compared to other existing techniques such as traditional two step dedicated approach, Nonlinear Solver (NLS) approach, etc. It employs frequency domain analysis of low frequency input and output signals, over cumbersome time domain computations. Thus a test method, including detailed behavioral modeling of the transceiver, appropriate test signal design along with a simple algorithm for extraction is presented.
ContributorsSreenivassan, Aiswariya (Author) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
153765-Thumbnail Image.png
Description
Modern Complex electronic system include multiple power domains and drastically varying power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to their high efficiency. Unfortunately, they are all subject to higher process

Modern Complex electronic system include multiple power domains and drastically varying power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to their high efficiency. Unfortunately, they are all subject to higher process variations jeopardizing stable operation of the power supply.

This research mainly focus on the technique to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of operation using a white noise based excitation and correlation. White noise excitation is generated via pseudo random disturbance at reference and PWM input of the converter with the test signal being spread over a wide bandwidth, below the converter noise and ripple floor. Test signal analysis is achieved by correlating the pseudo-random input sequence with the output response and thereby accumulating the desired behavior over time and pulling it above the noise floor of the measurement set-up. An off-the shelf power converter, LM27402 is used as the DUT for the experimental verification. Experimental results show that the proposed technique can estimate converter's natural frequency and Q-factor within ±2.5% and ±0.7% error margin respectively, over changes in load inductance and capacitance.
ContributorsBakliwal, Priyanka (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
153782-Thumbnail Image.png
Description
Composite materials are finally providing uses hitherto reserved for metals in structural systems applications – airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in

Composite materials are finally providing uses hitherto reserved for metals in structural systems applications – airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young’s Modulus and Poisson’s ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.
ContributorsHarrington, Joseph (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2015
154525-Thumbnail Image.png
Description
In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique.

In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique. An analytical solution is also analyzed for the Euler-Bernoulli beam in order to gain confidence in the numerical techniques when used for more advance beam theories that do not have a known analytical solution. Three different beam theories are analyzed in this report: The Euler-Bernoulli beam theory, Rayleigh beam theory and Timoshenko beam theory. A comparison of the results show the difference between each theory and the advantages of using a more advanced beam theory for higher frequency vibrations.
ContributorsTschetter, Ryan William (Author) / Hjelmstad, Keith D. (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
154311-Thumbnail Image.png
Description
The modern era of consumer electronics is dominated by compact, portable, affordable smartphones and wearable computing devices. Power management integrated circuits (PMICs) play a crucial role in on-chip power management, extending battery life and efficiency of integrated analog, radio-frequency (RF), and mixed-signal cores. Low-dropout (LDO) regulators are commonly used to

The modern era of consumer electronics is dominated by compact, portable, affordable smartphones and wearable computing devices. Power management integrated circuits (PMICs) play a crucial role in on-chip power management, extending battery life and efficiency of integrated analog, radio-frequency (RF), and mixed-signal cores. Low-dropout (LDO) regulators are commonly used to provide clean supply for low voltage integrated circuits, where point-of-load regulation is important. In System-On-Chip (SoC) applications, digital circuits can change their mode of operation regularly at a very high speed, imposing various load transient conditions for the regulator. These quick changes of load create a glitch in LDO output voltage, which hamper performance of the digital circuits unfavorably. For an LDO designer, minimizing output voltage variation and speeding up voltage glitch settling is an important task.

The presented research introduces two fully integrated LDO voltage regulators for SoC applications. N-type Metal-Oxide-Semiconductor (NMOS) power transistor based operation achieves high bandwidth owing to the source follower configuration of the regulation loop. A low input impedance and high output impedance error amplifier ensures wide regulation loop bandwidth and high gain. Current-reused dynamic biasing technique has been employed to increase slew-rate at the gate of power transistor during full-load variations, by a factor of two. Three design variations for a 1-1.8 V, 50 mA NMOS LDO voltage regulator have been implemented in a 180 nm Mixed-mode/RF process. The whole LDO core consumes 0.130 mA of nominal quiescent ground current at 50 mA load and occupies 0.21 mm x mm. LDO has a dropout voltage of 200 mV and is able to recover in 30 ns from a 65 mV of undershoot for 0-50 pF of on-chip load capacitance.
ContributorsDesai, Chirag (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2016
155692-Thumbnail Image.png
Description
This study explores the possibility of two matrices containing metallic particulates to act as smart materials by sensing of strain due to the presence of the conducting particles in the matrix. The first matrix is a regular Portland cement-based one while the second is a novel iron-based, carbonated binder developed

This study explores the possibility of two matrices containing metallic particulates to act as smart materials by sensing of strain due to the presence of the conducting particles in the matrix. The first matrix is a regular Portland cement-based one while the second is a novel iron-based, carbonated binder developed at ASU. Four different iron replacement percentages by volume (10%, 20%, 30% and 40%) in a Portland cement matrix were selected, whereas the best performing iron carbonate matrix developed was used. Electrical impedance spectroscopy was used to obtain the characteristic Nyquist plot before and after application of flexural load. Electrical circuit models were used to extract the changes in electrical properties under application of load. Strain sensing behavior was evaluated with respect to application of different stress levels and varying replacement levels of the inclusion. A similar approach was used to study the strain sensing capabilities of novel iron carbonate binder. It was observed that the strain sensing efficiency increased with increasing iron percentage and the resistivity increased with increase in load (or applied stress) for both the matrices. It is also found that the iron carbonate binder is more efficient in strain sensing as it had a higher gage factor when compared to the OPC matrix containing metallic inclusions.

Analytical equations (Maxwell) were used to extract frequency dependent electrical conductivity and permittivity of the cement paste (or the host matrix), interface, inclusion (iron) and voids to develop a generic electro-mechanical coupling model to for the strain sensing behavior. COMSOL Multiphysics 5.2a was used as finite element analysis software to develop the model. A MATLAB formulation was used to generate the microstructure with different volume fractions of inclusions. Material properties were assigned (the frequency dependent electrical parameters) and the coupled structural and electrical physics interface in COMSOL was used to model the strain sensing response. The experimental change in resistance matched well with the simulated values, indicating the applicability of the model to predict the strain sensing response of particulate composite systems.
ContributorsChowdhury, Swaptik (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Hoover, Christian G (Committee member) / Arizona State University (Publisher)
Created2017